SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Gafeira R.) "

Search: WFRF:(Gafeira R.)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Quintero Noda, C., et al. (author)
  • A study of the capabilities for inferring atmospheric information from high-spatial-resolution simulations
  • 2023
  • In: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 675
  • Journal article (peer-reviewed)abstract
    • In this work, we study the accuracy that can be achieved when inferring the atmospheric information from realistic numerical magnetohydrodynamic simulations that reproduce the spatial resolution we will obtain with future observations made by the 4 m class telescopes DKIST and EST. We first study multiple inversion configurations using the SIR code and the Fe i transitions at 630 nm until we obtain minor differences between the input and the inferred atmosphere in a wide range of heights. Also, we examine how the inversion accuracy depends on the noise level of the Stokes profiles. The results indicate that when the majority of the inverted pixels come from strongly magnetised areas, there are almost no restrictions in terms of the noise, obtaining good results for noise amplitudes up to 1 x 10(-3) of I-c. At the same time, the situation is different for observations where the dominant magnetic structures are weak, and noise restraints are more demanding. Moreover, we find that the accuracy of the fits is almost the same as that obtained without noise when the noise levels are on the order of 1 x 10(-4) of I-c. We, therefore, advise aiming for noise values on the order of or lower than 5 x 10(-4) of I-c if observers seek reliable interpretations of the results for the magnetic field vector reliably. We expect those noise levels to be achievable by next-generation 4m class telescopes thanks to an optimised polarisation calibration and the large collecting area of the primary mirror.
  •  
2.
  • Noda, C. Quintero, et al. (author)
  • Diagnostic capabilities of spectropolarimetric observations for understanding solar phenomena : I. Zeeman-sensitive photospheric lines
  • 2021
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 652
  • Journal article (peer-reviewed)abstract
    • Future ground-based telescopes will expand our capabilities for simultaneous multi-line polarimetric observations in a wide range of wavelengths, from the near-ultraviolet to the near-infrared. This creates a strong demand to compare candidate spectral lines to establish a guideline of the lines that are most appropriate for each observation target. We focused in this first work on Zeeman-sensitive photospheric lines in the visible and infrared. We first examined their polarisation signals and response functions using a 1D semi-empirical atmosphere. Then we studied the spatial distribution of the line core intensity and linear and circular polarisation signals using a realistic 3D numerical simulation. We ran inversions of synthetic profiles, and we compared the heights at which we obtain a high correlation between the input and the inferred atmosphere. We also used this opportunity to revisit the atomic information we have on these lines and computed the broadening cross-sections due to collisions with neutral hydrogen atoms for all the studied spectral lines. The results reveal that four spectral lines stand out from the rest for quiet-Sun and network conditions: Fe I 5250.2, 6302, 8468, and 15 648 angstrom. The first three form higher in the atmosphere, and the last line is mainly sensitive to the atmospheric parameters at the bottom of the photosphere. However, as they reach different heights, we strongly recommend using at least one of the first three candidates together with the Fe I 15 648 angstrom line to optimise our capabilities for inferring the thermal and magnetic properties of the lower atmosphere.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view