SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Galinsky R.) "

Search: WFRF:(Galinsky R.)

  • Result 1-6 of 6
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Galinsky, R., et al. (author)
  • A Systematic Review of Magnesium Sulfate for Perinatal Neuroprotection: What Have We Learnt From the Past Decade?
  • 2020
  • In: Frontiers in Neurology. - : Frontiers Media SA. - 1664-2295. ; 11
  • Journal article (peer-reviewed)abstract
    • There is an important unmet need to improve long term outcomes of encephalopathy for preterm and term infants. Meta-analyses of large controlled trials suggest that maternal treatment with magnesium sulfate (MgSO4) is associated with a reduced risk of cerebral palsy and gross motor dysfunction after premature birth. However, to date, follow up to school age has found an apparent lack of long-term clinical benefit. Because of this inconsistency, it remains controversial whether MgSO4 offers sustained neuroprotection. We systematically reviewed preclinical and clinical studies reported from January 1 2010, to January 31 2020 to evaluate the most recent advances and knowledge gaps relating to the efficacy of MgSO4 for the treatment of perinatal brain injury. The outcomes of MgSO4 in preterm and term-equivalent animal models of perinatal encephalopathy were highly inconsistent between studies. None of the perinatal rodent studies that suggested benefit directly controlled body or brain temperature. The majority of the studies did not control for sex, study long term histological and functional outcomes or use pragmatic treatment regimens and many did not report controlling for potential study bias. Finally, most of the recent preterm or term human studies that tested the potential of MgSO4 for perinatal neuroprotection were relatively underpowered, but nevertheless, suggest that any improvements in neurodevelopment were at best modest or absent. On balance, these data suggest that further rigorous testing in translational preclinical models of perinatal encephalopathy is essential to ensure safety and best regimens for optimal preterm neuroprotection, and before further clinical trials of MgSO4 for perinatal encephalopathy at term are undertaken.
  •  
3.
  • Galinsky, R., et al. (author)
  • Magnesium Is Not Consistently Neuroprotective for Perinatal Hypoxia-Ischemia in Term-Equivalent Models in Preclinical Studies: A Systematic Review
  • 2014
  • In: Developmental Neuroscience. - : S. Karger AG. - 0378-5866 .- 1421-9859. ; 36:2, s. 73-82
  • Journal article (peer-reviewed)abstract
    • There is an important unmet need to further improve the outcome of neonatal encephalopathy in term infants. Meta-analyses of large controlled trials now suggest that maternal magnesium sulfate (MgSO4) therapy is associated with a reduced risk of cerebral palsy and gross motor dysfunction after premature birth, but that it has no effect on death or disability. Because of this inconsistency, it remains controversial whether MgSO4 is clinically neuroprotective and, thus, it is unclear whether it would be appropriate to test MgSO4 for treatment of encephalopathy in term infants. We therefore systematically reviewed the preclinical evidence for neuroprotection with MgSO4 before or after hypoxic-ischemic encephalopathy (HIE) in term-equivalent perinatal and adult animals. The outcomes were highly inconsistent between studies. Although there were differences in dose and timing of administration, there was evidence that beneficial effects of MgSO4 were associated with confounding mild hypothermia and, strikingly, the studies that included rigorous maintenance of environmental temperature or body temperature consistently suggested a lack of effect. On balance, these preclinical studies suggest that peripherally administered MgSO4 is unlikely to be neuroprotective. Rigorous testing in translational animal models of perinatal HIE is needed before MgSO4 should be considered in clinical trials for encephalopathy in term infants. (C) 2014 S. Karger AG, Basel
  •  
4.
  •  
5.
  • Stojanovska, V, et al. (author)
  • Increased Prostaglandin E2 in Brainstem Respiratory Centers Is Associated With Inhibition of Breathing Movements in Fetal Sheep Exposed to Progressive Systemic Inflammation
  • 2022
  • In: Frontiers in physiology. - : Frontiers Media SA. - 1664-042X. ; 13, s. 841229-
  • Journal article (peer-reviewed)abstract
    • Preterm newborns commonly experience apnoeas after birth and require respiratory stimulants and support. Antenatal inflammation is a common antecedent of preterm birth and inflammatory mediators, particularly prostaglandin E2 (PGE2), are associated with inhibition of vital brainstem respiratory centers. In this study, we tested the hypothesis that exposure to antenatal inflammation inhibits fetal breathing movements (FBMs) and increases inflammation and PGE2 levels in brainstem respiratory centers, cerebrospinal fluid (CSF) and blood plasma.MethodsChronically instrumented late preterm fetal sheep at 0.85 of gestation were randomly assigned to receive repeated intravenous saline (n = 8) or lipopolysaccharide (LPS) infusions (experimental day 1 = 300 ng, day 2 = 600 ng, day 3 = 1200 ng, n = 8). Fetal breathing movements were recorded throughout the experimental period. Sheep were euthanized 4 days after starting infusions for assessment of brainstem respiratory center histology.ResultsLPS infusions increased circulating and cerebrospinal fluid PGE2 levels, decreased arterial oxygen saturation, increased the partial pressure of carbon dioxide and lactate concentration, and decreased pH (p < 0.05 for all) compared to controls. LPS infusions caused transient reductions in the % of time fetuses spent breathing and the proportion of vigorous fetal breathing movements (P < 0.05 vs. control). LPS-exposure increased PGE2 expression in the RTN/pFRG (P < 0.05 vs. control) but not the pBÖTC (P < 0.07 vs. control) of the brainstem. No significant changes in gene expression were observed for PGE2 enzymes or caspase 3. LPS-exposure reduced the numbers of GFAP-immunoreactive astrocytes in the RTN/pFRG, NTS and XII of the brainstem (P < 0.05 vs. control for all) and increased microglial activation in the RTN/pFRG, preBÖTC, NTS, and XII brainstem respiratory centers (P < 0.05 vs. control for all).ConclusionChronic LPS-exposure in late preterm fetal sheep increased PGE2 levels within the brainstem, CSF and plasma, and was associated with inhibition of FBMs, astrocyte loss and microglial activation within the brainstem respiratory centers. Further studies are needed to determine whether the inflammation-induced increase in PGE2 levels plays a key role in depressing respiratory drive in the perinatal period.
  •  
6.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-6 of 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view