SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Garcia Herranz N.) "

Search: WFRF:(Garcia Herranz N.)

  • Result 1-10 of 10
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  • Mikityuk, K., et al. (author)
  • Horizon-2020 ESFR-SMART project on Sodium Fast Reactor Safety: status after 18 months
  • 2019
  • Conference paper (other academic/artistic)abstract
    • To improve the public acceptance of the future nuclear power in Europe we have to demonstrate that the new reactors have significantly higher safety level compared to traditional reactors. The ESFR-SMART project (European Sodium Fast Reactor Safety Measures Assessment and Research Tools) aims at enhancing further the safety of Generation-IV SFRs and in particular of the commercial-size European Sodium Fast Reactor (ESFR) in accordance with the European Sustainable Nuclear Industrial Initiative (ESNII) roadmap and in close cooperation with the Advanced Sodium Technological Reactor for Industrial Demonstration (ASTRID) program. The project aims at 5 specific objectives: 1. Produce new experimental data in order to support calibration and validation of the computational tools for each defence-in-depth level. 2. Test and qualify new instrumentations in order to support their utilization in the reactor protection system. 3. Perform further calibration and validation of the computational tools for each defence-in-depth level in order to support safety assessments of Generation-IV SFRs, using the data produced in the project as well as selected legacy data. 4. Select, implement and assess new safety measures for the commercial-size ESFR, using the GIF methodologies, the FP7 CP-ESFR project legacy, the calibrated and validated codes and being in accordance with the update of the European and international safety frameworks taking into account the Fukushima accident. 5. Strengthen and link together new networks, in particular, the network of the European sodium facilities and the network of the European students working on the SFR technology. By addressing the industry, policy makers and general public, the project is expected to make a meaningful impact on economics, environment, EU policy and society. Selected results and milestones achieved during the first eighteen months of the project will be briefly presented, including − proposal of new safety measures for ESFR; − evaluation of ESFR core performance; − benchmarking of codes; − experimental programs; and − education and training.
  •  
6.
  • Obers, Niels A., et al. (author)
  • Quantum gravity phenomenology at the dawn of the multi-messenger era—A review
  • 2022
  • In: Progress in Particle and Nuclear Physics. - : Elsevier BV. - 0146-6410 .- 1873-2224. ; 125
  • Research review (peer-reviewed)abstract
    • The exploration of the universe has recently entered a new era thanks to the multi-messenger paradigm, characterized by a continuous increase in the quantity and quality of experimental data that is obtained by the detection of the various cosmic messengers (photons, neutrinos, cosmic rays and gravitational waves) from numerous origins. They give us information about their sources in the universe and the properties of the intergalactic medium. Moreover, multi-messenger astronomy opens up the possibility to search for phenomenological signatures of quantum gravity. On the one hand, the most energetic events allow us to test our physical theories at energy regimes which are not directly accessible in accelerators; on the other hand, tiny effects in the propagation of very high energy particles could be amplified by cosmological distances. After decades of merely theoretical investigations, the possibility of obtaining phenomenological indications of Planck-scale effects is a revolutionary step in the quest for a quantum theory of gravity, but it requires cooperation between different communities of physicists (both theoretical and experimental). This review, prepared within the COST Action CA18108 “Quantum gravity phenomenology in the multi-messenger approach”, is aimed at promoting this cooperation by giving a state-of-the art account of the interdisciplinary expertise that is needed in the effective search of quantum gravity footprints in the production, propagation and detection of cosmic messengers.
  •  
7.
  •  
8.
  • Coll, M., et al. (author)
  • Towards Oxide Electronics: a Roadmap
  • 2019
  • In: Applied Surface Science. - : Elsevier BV. - 0169-4332 .- 1873-5584. ; 482, s. 1-93
  • Journal article (peer-reviewed)abstract
    • At the end of a rush lasting over half a century, in which CMOS technology has been experiencing a constant and breathtaking increase of device speed and density, Moore’s law is approaching the insurmountable barrier given by the ultimate atomic nature of matter. A major challenge for 21st century scientists is finding novel strategies, concepts and materials for replacing silicon-based CMOS semiconductor technologies and guaranteeing a continued and steady technological progress in next decades. Among the materials classes candidate to contribute to this momentous challenge, oxide films and heterostructures are a particularly appealing hunting ground. The vastity, intended in pure chemical terms, of this class of compounds, the complexity of their correlated behaviour, and the wealth of functional properties they display, has already made these systems the subject of choice, worldwide, of a strongly networked, dynamic and interdisciplinary research community. Oxide science and technology has been the target of a wide four-year project, named Towards Oxide-Based Electronics (TO-BE), that has been recently running in Europe and has involved as participants several hundred scientists from 29 EU countries. In this review and perspective paper, published as a final deliverable of the TO-BE Action, the opportunities of oxides as future electronic materials for Information and Communication Technologies ICT and Energy are discussed. The paper is organized as a set of contributions, all selected and ordered as individual building blocks of a wider general scheme. After a brief preface by the editors and an introductory contribution, two sections follow. The first is mainly devoted to providing a perspective on the latest theoretical and experimental methods that are employed to investigate oxides and to produce oxide-based films, heterostructures and devices. In the second, all contributions are dedicated to different specific fields of applications of oxide thin films and heterostructures, in sectors as data storage and computing, optics and plasmonics, magnonics, energy conversion and harvesting, and power electronics.
  •  
9.
  • Podadera, I., et al. (author)
  • COMMISSIONING PLAN OF THE IFMIF-DONES ACCELERATOR
  • 2022
  • In: LINAC 2022 - International Linear Accelerator Conference, Proceedings. - 2226-0366. - 9783954502158 ; , s. 331-334
  • Conference paper (peer-reviewed)abstract
    • IFMIF-DONES (International Fusion Materials Irradiation Facility- DEMO-Oriented Neutron Early Source) - a powerful neutron irradiation facility for studies and certification of materials to be used in fusion reactors - is planned as part of the European roadmap to fusion electricity. Its main goal will be to characterize and to qualify materials under irradiation in a neutron field similar to the one faced in a fusion reactor. The intense neutron source is produced by impinging deuterons, from high-power linear deuteron accelerator, on a liquid lithium curtain. The facility has accomplished the preliminary design phase and is currently in its detailed design phase. At the present stage, it is important to have a clear understanding of how the commissioning of the facility will be performed, especially the commissioning of a 5 MW CW deuteron beam, together with the lithium curtain and the beam optimization for the neutron irradiation. In this contribution, the present plans for the hardware and beam commissioning of the accelerator will be given, focusing on the most critical aspects of the tiered approach and on the integration of the procedure with the lithium and test systems.
  •  
10.
  • Rochman, D., et al. (author)
  • Nuclear Data Uncertainties for Typical LWR Fuel Assemblies and a Simple Reactor Core
  • 2017
  • In: Nuclear Data Sheets. - : Elsevier BV. - 0090-3752 .- 1095-9904. ; 139, s. 1-76
  • Journal article (peer-reviewed)abstract
    • Abstract The impact of the current nuclear data library covariances such as in ENDF/B-VII.1, JEFF-3.2, JENDL-4.0, SCALE and TENDL, for relevant current reactors is presented in this work. The uncertainties due to nuclear data are calculated for existing PWR and BWR fuel assemblies (with burn-up up to 40 GWd/tHM, followed by 10 years of cooling time) and for a simplified PWR full core model (without burn-up) for quantities such as k ∞ , macroscopic cross sections, pin power or isotope inventory. In this work, the method of propagation of uncertainties is based on random sampling of nuclear data, either from covariance files or directly from basic parameters. Additionally, possible biases on calculated quantities are investigated such as the self-shielding treatment. Different calculation schemes are used, based on CASMO, SCALE, DRAGON, MCNP or FISPACT-II, thus simulating real-life assignments for technical-support organizations. The outcome of such a study is a comparison of uncertainties with two consequences. One: although this study is not expected to lead to similar results between the involved calculation schemes, it provides an insight on what can happen when calculating uncertainties and allows to give some perspectives on the range of validity on these uncertainties. Two: it allows to dress a picture of the state of the knowledge as of today, using existing nuclear data library covariances and current methods.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view