SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Gasser R) "

Search: WFRF:(Gasser R)

  • Result 1-10 of 49
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Rajewsky, N., et al. (author)
  • LifeTime and improving European healthcare through cell-based interceptive medicine
  • 2020
  • In: Nature. - : Springer Nature. - 0028-0836 .- 1476-4687. ; 587:7834, s. 377-386
  • Journal article (peer-reviewed)abstract
    • LifeTime aims to track, understand and target human cells during the onset and progression of complex diseases and their response to therapy at single-cell resolution. This mission will be implemented through the development and integration of single-cell multi-omics and imaging, artificial intelligence and patient-derived experimental disease models during progression from health to disease. Analysis of such large molecular and clinical datasets will discover molecular mechanisms, create predictive computational models of disease progression, and reveal new drug targets and therapies. Timely detection and interception of disease embedded in an ethical and patient-centered vision will be achieved through interactions across academia, hospitals, patient-associations, health data management systems and industry. Applying this strategy to key medical challenges in cancer, neurological, infectious, chronic inflammatory and cardiovascular diseases at the single-cell level will usher in cell-based interceptive medicine in Europe over the next decade.
  •  
2.
  • Manning, Alisa, et al. (author)
  • A Low-Frequency Inactivating AKT2 Variant Enriched in the Finnish Population Is Associated With Fasting Insulin Levels and Type 2 Diabetes Risk
  • 2017
  • In: Diabetes. - : AMER DIABETES ASSOC. - 0012-1797 .- 1939-327X. ; 66:7, s. 2019-2032
  • Journal article (peer-reviewed)abstract
    • To identify novel coding association signals and facilitate characterization of mechanisms influencing glycemic traits and type 2 diabetes risk, we analyzed 109,215 variants derived from exome array genotyping together with an additional 390,225 variants from exome sequence in up to 39,339 normoglycemic individuals from five ancestry groups. We identified a novel association between the coding variant (p.Pro50Thr) in AKT2 and fasting plasma insulin (FI), a gene in which rare fully penetrant mutations are causal for monogenic glycemic disorders. The low-frequency allele is associated with a 12% increase in FI levels. This variant is present at 1.1% frequency in Finns but virtually absent in individuals from other ancestries. Carriers of the FI-increasing allele had increased 2-h insulin values, decreased insulin sensitivity, and increased risk of type 2 diabetes (odds ratio 1.05). In cellular studies, the AKT2-Thr50 protein exhibited a partial loss of function. We extend the allelic spectrum for coding variants in AKT2 associated with disorders of glucose homeostasis and demonstrate bidirectional effects of variants within the pleckstrin homology domain of AKT2.
  •  
3.
  • van der Lee, S. J., et al. (author)
  • A nonsynonymous mutation in PLCG2 reduces the risk of Alzheimer's disease, dementia with Lewy bodies and frontotemporal dementia, and increases the likelihood of longevity
  • 2019
  • In: Acta Neuropathologica. - : Springer Science and Business Media LLC. - 0001-6322 .- 1432-0533. ; 138:2, s. 237-250
  • Journal article (peer-reviewed)abstract
    • The genetic variant rs72824905-G (minor allele) in the PLCG2 gene was previously associated with a reduced Alzheimer's disease risk (AD). The role of PLCG2 in immune system signaling suggests it may also protect against other neurodegenerative diseases and possibly associates with longevity. We studied the effect of the rs72824905-G on seven neurodegenerative diseases and longevity, using 53,627 patients, 3,516 long-lived individuals and 149,290 study-matched controls. We replicated the association of rs72824905-G with reduced AD risk and we found an association with reduced risk of dementia with Lewy bodies (DLB) and frontotemporal dementia (FTD). We did not find evidence for an effect on Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS) and multiple sclerosis (MS) risks, despite adequate sample sizes. Conversely, the rs72824905-G allele was associated with increased likelihood of longevity. By-proxy analyses in the UK Biobank supported the associations with both dementia and longevity. Concluding, rs72824905-G has a protective effect against multiple neurodegenerative diseases indicating shared aspects of disease etiology. Our findings merit studying the PLC gamma 2 pathway as drug-target.
  •  
4.
  •  
5.
  • Emery-Corbin, Samantha J., et al. (author)
  • Eukaryote-Conserved Methylarginine Is Absent in Diplomonads and Functionally Compensated in Giardia
  • 2020
  • In: Molecular biology and evolution. - : OXFORD UNIV PRESS. - 0737-4038 .- 1537-1719. ; 37:12, s. 3525-3549
  • Journal article (peer-reviewed)abstract
    • Methylation is a common posttranslational modification of arginine and lysine in eukaryotic proteins. Methylproteomes are best characterized for higher eukaryotes, where they are functionally expanded and evolved complex regulation. However, this is not the case for protist species evolved from the earliest eukaryotic lineages. Here, we integrated bioinformatic, proteomic, and drug-screening data sets to comprehensively explore the methylproteome of Giardia duodenalis-a deeply branching parasitic protist. We demonstrate that Giardia and related diplomonads lack arginine-methyltransferases and have remodeled conserved RGG/RG motifs targeted by these enzymes. We also provide experimental evidence for methylarginine absence in proteomes of Giardia but readily detect methyllysine. We bioinformatically infer 11 lysine-methyltransferases in Giardia, including highly diverged Su(var)3-9, Enhancer-of-zeste and Trithorax proteins with reduced domain architectures, and novel annotations demonstrating conserved methyllysine regulation of eukaryotic elongation factor 1 alpha. Using mass spectrometry, we identifymore than 200methyllysine sites in Giardia, including in species-specific gene families involved in cytoskeletal regulation, enriched in coiled-coil features. Finally, we use known methylation inhibitors to show that methylation plays key roles in replication and cyst formation in this parasite. This study highlights reduced methylation enzymes, sites, and functions early in eukaryote evolution, including absent methylarginine networks in the Diplomonadida. These results challenge the view that arginine methylation is eukaryote conserved and demonstrate that functional compensation of methylarginine was possible preceding expansion and diversification of these key networks in higher eukaryotes.
  •  
6.
  • Sailer, Anna, et al. (author)
  • A genome-wide association study in multiple system atrophy
  • 2016
  • In: Neurology. - 0028-3878. ; 87:15, s. 1591-1598
  • Journal article (peer-reviewed)abstract
    • Objective: To identify genetic variants that play a role in the pathogenesis of multiple system atrophy (MSA), we undertook a genome-wide association study (GWAS). Methods: We performed a GWAS with >5 million genotyped and imputed single nucleotide polymorphisms (SNPs) in 918 patients with MSA of European ancestry and 3,864 controls. MSA cases were collected from North American and European centers, one third of which were neuropathologically confirmed. Results: We found no significant loci after stringent multiple testing correction. A number of regions emerged as potentially interesting for follow-up at p < 1 × 10-6, including SNPs in the genes FBXO47, ELOVL7, EDN1, and MAPT. Contrary to previous reports, we found no association of the genes SNCA and COQ2 with MSA. Conclusions: We present a GWAS in MSA. We have identified several potentially interesting gene loci, including the MAPT locus, whose significance will have to be evaluated in a larger sample set. Common genetic variation in SNCA and COQ2 does not seem to be associated with MSA. In the future, additional samples of well-characterized patients with MSA will need to be collected to perform a larger MSA GWAS, but this initial study forms the basis for these next steps.
  •  
7.
  • Ansell, Brendan R. E., et al. (author)
  • Divergent Transcriptional Responses to Physiological and Xenobiotic Stress in Giardia duodenalis
  • 2016
  • In: Antimicrobial Agents and Chemotherapy. - 0066-4804 .- 1098-6596. ; 60:10, s. 6034-6045
  • Journal article (peer-reviewed)abstract
    • Understanding how parasites respond to stress can help to identify essential biological processes. Giardia duodenalis is a parasitic protist that infects the human gastrointestinal tract and causes 200 to 300 million cases of diarrhea annually. Metronidazole, a major antigiardial drug, is thought to cause oxidative damage within the infective trophozoite form. However, treatment efficacy is suboptimal, due partly to metronidazole-resistant infections. To elucidate conserved and stress-specific responses, we calibrated sublethal metronidazole, hydrogen peroxide, and thermal stresses to exert approximately equal pressure on trophozoite growth and compared transcriptional responses after 24 h of exposure. We identified 252 genes that were differentially transcribed in response to all three stressors, including glycolytic and DNA repair enzymes, a mitogen-activated protein (MAP) kinase, high-cysteine membrane proteins, flavin adenine dinucleotide (FAD) synthetase, and histone modification enzymes. Transcriptional responses appeared to diverge according to physiological or xenobiotic stress. Downregulation of the antioxidant system and alpha-giardins was observed only under metronidazole-induced stress, whereas upregulation of GARP-like transcription factors and their subordinate genes was observed in response to hydrogen peroxide and thermal stressors. Limited evidence was found in support of stress-specific response elements upstream of differentially transcribed genes; however, antisense derepression and differential regulation of RNA interference machinery suggest multiple epigenetic mechanisms of transcriptional control.
  •  
8.
  • Ansell, Brendan R. E., et al. (author)
  • Drug resistance in Giardia duodenalis
  • 2015
  • In: Biotechnology Advances. - : Elsevier BV. - 0734-9750 .- 1873-1899. ; 33:6, s. 888-901
  • Research review (peer-reviewed)abstract
    • Giardia duodenalis is a microaerophilic parasite of the human gastrointestinal tract and a major contributor to diarrheal and post-infectious chronic gastrointestinal disease world-wide. Treatment of G. duodenalis infection currently relies on a small number of drug classes. Nitroheterocyclics, in particular metronidazole, have represented the front line treatment for the last 40 years. Nitroheterocyclic-resistant G. duodenalis have been isolated from patients and created in vitro, prompting considerable research into the biomolecular mechanisms of resistance. These compounds are redox-active and are believed to damage proteins and DNA after being activated by oxidoreductase enzymes in metabolically active cells. In this review, we explore the molecular phenotypes of nitroheterocyclic-resistant G. duodenalis described to date in the context of the protisfs unusual glycolytic and antioxidant systems. We propose that resistance mechanisms are likely to extend well beyond currently described resistance-associated enzymes (i.e., pyruvate ferredoxin oxidoreductases and nitroreductases), to include NAD(P)H- and flavin-generating pathways, and possibly redox-sensitive epigenetic regulation. Mechanisms that allow G. duodenalis to tolerate oxidative stress may lead to resistance against both oxygen and nitroheterocyclics, with implications for clinical control. The present review highlights the potential for systems biology tools and advanced bioinformatics to further investigate the multifaceted mechanisms of nitroheterocyclic resistance in this important pathogen.
  •  
9.
  • Ansell, Brendan R. E., et al. (author)
  • Time-Dependent Transcriptional Changes in Axenic Giardia duodenalis Trophozoites
  • 2015
  • In: PLoS Neglected Tropical Diseases. - : Public Library of Science (PLoS). - 1935-2727 .- 1935-2735. ; 9:12
  • Journal article (peer-reviewed)abstract
    • Giardia duodenalis is the most common gastrointestinal protozoan parasite of humans and a significant contributor to the global burden of both diarrheal disease and post-infectious chronic disorders. Although G. duodenalis can be cultured axenically, significant gaps exist in our understanding of the molecular biology and metabolism of this pathogen. The present study employed RNA sequencing to characterize the mRNA transcriptome of G. duodenalis trophozoites in axenic culture, at log (48 h of growth), stationary (60 h), and declining (96 h) growth phases. Using similar to 400-times coverage of the transcriptome, we identified 754 differentially transcribed genes (DTGs), mainly representing two large DTG groups: 438 that were down-regulated in the declining phase relative to log and stationary phases, and 281 that were up-regulated. Differential transcription of prominent antioxidant and glycolytic enzymes implicated oxygen tension as a key factor influencing the transcriptional program of axenic trophozoites. Systematic bioinformatic characterization of numerous DTGs encoding hypothetical proteins of unknown function was achieved using structural homology searching. This powerful approach greatly informed the differential transcription analysis and revealed putative novel antioxidant-coding genes, and the presence of a nearcomplete two-component-like signaling system that may link cytosolic redox or metabolite sensing to the observed transcriptional changes. Motif searching applied to promoter regions of the two large DTG groups identified different putative transcription factor-binding motifs that may underpin global transcriptional regulation. This study provides new insights into the drivers and potential mediators of transcriptional variation in axenic G. duodenalis and provides context for static transcriptional studies.
  •  
10.
  • Ansell, Brendan R. E., et al. (author)
  • Transcriptomics Indicates Active and Passive Metronidazole Resistance Mechanisms in Three Seminal Giardia Lines
  • 2017
  • In: Frontiers in Microbiology. - : Frontiers Media SA. - 1664-302X. ; 8
  • Journal article (peer-reviewed)abstract
    • Giardia duodenalis is an intestinal parasite that causes 200-300 million episodes of diarrhoea annually. Metronidazole (Mtz) is a front-line anti-giardial, but treatment failure is common and clinical resistance has been demonstrated. Mtz is thought to be activated within the parasite by oxidoreductase enzymes, and to kill by causing oxidative damage. In G. duodenalis, Mtz resistance involves active and passive mechanisms. Relatively low activity of iron-sulfur binding proteins, namely pyruvate: ferredoxin oxidoreductase (PFOR), ferredoxins, and nitroreductase-1, enable resistant cells to passively avoid Mtz activation. Additionally, low expression of oxygen-detoxification enzymes can allow passive (non-enzymatic) Mtz detoxification via futile redox cycling. In contrast, active resistance mechanisms include complete enzymatic detoxification of the pro-drug by nitroreductase-2 and enhanced repair of oxidized biomolecules via thioredoxin-dependent antioxidant enzymes. Molecular resistance mechanisms may be largely founded on reversible transcriptional changes, as some resistant lines revert to drug sensitivity during drug-free culture in vitro, or passage through the life cycle. To comprehensively characterize these changes, we undertook strand-specific RNA sequencing of three laboratory-derived Mtz-resistant lines, 106-2ID(10), 713-M3, and WB-M3, and compared transcription relative to their susceptible parents. Common up-regulated genes encoded variant-specific surface proteins (VSPs), a high cysteine membrane protein, calcium and zinc channels, a Mad-2 cell cycle regulator and a putative fatty acid a alpha-oxidase. Down-regulated genes included nitroreductase-1, putative chromate and quinone reductases, and numerous genes that act proximal to PFOR. Transcriptional changes in 106-2ID(10) diverged from those in 713-r and WB-r (r <= 0.2), which were more similar to each other (r = 0.47). In 106-2ID(10), a nonsense mutation in nitroreductase-1 transcripts could enhance passive resistance whereas increased transcription of nitroreductase-2, and a MATE transmembrane pump system, suggest active drug detoxification and efflux, respectively. By contrast, transcriptional changes in 713-M3 and WB-M3 indicated a higher oxidative stress load, attributed to Mtz- and oxygen-derived radicals, respectively. Quantitative comparisons of orthologous gene transcription between Mtz-resistant G. duodenalis and Trichomonas vaginalis, a closely related parasite, revealed changes in transcripts encoding peroxidases, heat shock proteins, and FMN-binding oxidoreductases, as prominent correlates of resistance. This work provides deep insight into Mtz-resistant G. duodenalis, and illuminates resistance-associated features across parasitic species.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 49

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view