SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Geppert Wolf Dietrich) "

Search: WFRF:(Geppert Wolf Dietrich)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Mousis, Olivier, et al. (author)
  • Methane Clathrates in the Solar System
  • 2015
  • In: Astrobiology. - : Mary Ann Liebert Inc. - 1531-1074 .- 1557-8070. ; 15:4, s. 308-326
  • Research review (peer-reviewed)abstract
    • We review the reservoirs of methane clathrates that may exist in the different bodies of the Solar System. Methane was formed in the interstellar medium prior to having been embedded in the protosolar nebula gas phase. This molecule was subsequently trapped in clathrates that formed from crystalline water ice during the cooling of the disk and incorporated in this form into the building blocks of comets, icy bodies, and giant planets. Methane clathrates may play an important role in the evolution of planetary atmospheres. On Earth, the production of methane in clathrates is essentially biological, and these compounds are mostly found in permafrost regions or in the sediments of continental shelves. On Mars, methane would more likely derive from hydrothermal reactions with olivine-rich material. If they do exist, martian methane clathrates would be stable only at depth in the cryosphere and sporadically release some methane into the atmosphere via mechanisms that remain to be determined. In the case of Titan, most of its methane probably originates from the protosolar nebula, where it would have been trapped in the clathrates agglomerated by the satellite's building blocks. Methane clathrates are still believed to play an important role in the present state of Titan. Their presence is invoked in the satellite's subsurface as a means of replenishing its atmosphere with methane via outgassing episodes. The internal oceans of Enceladus and Europa also provide appropriate thermodynamic conditions that allow formation of methane clathrates. In turn, these clathrates might influence the composition of these liquid reservoirs. Finally, comets and Kuiper Belt Objects might have formed from the agglomeration of clathrates and pure ices in the nebula. The methane observed in comets would then result from the destabilization of clathrate layers in the nuclei concurrent with their approach to perihelion. Thermodynamic equilibrium calculations show that methane-rich clathrate layers may exist on Pluto as well.
  •  
2.
  • Shebanits, Oleg (author)
  • Titan’s ionosphere and dust : – as seen by a space weather station
  • 2017
  • Doctoral thesis (other academic/artistic)abstract
    • Titan, the largest moon of Saturn, is the only known moon with a fully developed nitrogen-rich atmosphere, its ionosphere is detectable as high as 2200 km above its surface and hosts complex organic chemistry. Titan’s atmosphere and ionosphere has striking similarities to current theories of these regions around Earth 3.5 billion years ago. The Cassini spacecraft has been in orbit around Saturn since 2004 and carries a wide range of instruments for investigating Titan’s ionosphere, among them the Langmuir probe, a “space weather station”, manufactured and operated by the Swedish Institute of Space Physics, Uppsala.This thesis presents studies of positive ions, negative ions and negatively charged dust grains (also called aerosols) in Titan’s ionosphere using the in-situ measurements by the Cassini Langmuir probe, supplemented by the data from particle mass spectrometers. One of the main results is the detection of significant (up to about 4000 cm-3) charge densities of heavy (up to about 13800 amu/charge) negative ions and dust grains in Titan’s ionosphere below 1400 km altitude. The dust is found to be the main negative charge carrier below about 1100 km on the nightside/terminator ionosphere, forming a dusty plasma (also called “ion-ion” plasma). A new analysis method is developed using a combination of simultaneous observations by multiple instruments for a case study of four flybys of Titan’s ionosphere, further constraining the ionospheric plasma charge densities. This allows to predict a dusty plasma in the dayside ionosphere below 900 km altitude (thus declaring it a global phenomenon), as well as to empirically estimate the average charge of the negative ions and dust grains to between -2.5 and -1.5 elementary charges. The complete Cassini dataset spans just above 13 years, allowing to study effects of the solar activity on Titan’s ionosphere. From solar minimum to maximum, the increase in the solar EUV flux increases the densities by a factor of ~2 in the dayside ionosphere and, surprisingly, decreases by a factor of ~3-4 in the nightside ionosphere. The latter is proposed to be an effect of the ionospheric photochemistry modified by higher solar EUV flux. Modelling photoionization also reveals an EUV trend (as well as solar zenith angle and corotational plasma ram dependencies) in the loss rate coefficient.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view