SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Gerding Albert) "

Search: WFRF:(Gerding Albert)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Nilsson, Avlant, 1985, et al. (author)
  • Quantitative analysis of amino acid metabolism in liver cancer links glutamate excretion to nucleotide synthesis
  • 2020
  • In: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 117:19, s. 10294-10304
  • Journal article (peer-reviewed)abstract
    • Many cancer cells consume glutamine at high rates; counterintuitively, they simultaneously excrete glutamate, the first intermediate in glutamine metabolism. Glutamine consumption has been linked to replenishment of tricarboxylic acid cycle (TCA) intermediates and synthesis of adenosine triphosphate (ATP), but the reason for glutamate excretion is unclear. Here, we dynamically profile the uptake and excretion fluxes of a liver cancer cell line (HepG2) and use genome-scale metabolic modeling for in-depth analysis. We find that up to 30% of the glutamine is metabolized in the cytosol, primarily for nucleotide synthesis, producing cytosolic glutamate. We hypothesize that excreting glutamate helps the cell to increase the nucleotide synthesis rate to sustain growth. Indeed, we show experimentally that partial inhibition of glutamate excretion reduces cell growth. Our integrative approach thus links glutamine addiction to glutamate excretion in cancer and points toward potential drug targets.
  •  
2.
  • Wegrzyn, Agnieszka B., et al. (author)
  • Fibroblast-specific genome-scale modelling predicts an imbalance in amino acid metabolism in Refsum disease
  • 2020
  • In: The FEBS Journal. - : Wiley. - 1742-464X .- 1742-4658. ; 287:23, s. 5096-5113
  • Journal article (peer-reviewed)abstract
    • Refsum disease (RD) is an inborn error of metabolism that is characterised by a defect in peroxisomal α-oxidation of the branched-chain fatty acid phytanic acid. The disorder presents with late-onset progressive retinitis pigmentosa and polyneuropathy and can be diagnosed biochemically by elevated levels of phytanate in plasma and tissues of patients. To date, no cure exists for RD, but phytanate levels in patients can be reduced by plasmapheresis and a strict diet. In this study, we reconstructed a fibroblast-specific genome-scale model based on the recently published, FAD-curated model, based on Recon3D reconstruction. We used transcriptomics (available via GEO database with identifier GSE138379), metabolomics and proteomics (available via ProteomeXchange with identifier PXD015518) data, which we obtained from healthy controls and RD patient fibroblasts incubated with phytol, a precursor of phytanic acid. Our model correctly represents the metabolism of phytanate and displays fibroblast-specific metabolic functions. Using this model, we investigated the metabolic phenotype of RD at the genome scale, and we studied the effect of phytanate on cell metabolism. We identified 53 metabolites that were predicted to discriminate between healthy and RD patients, several of which with a link to amino acid metabolism. Ultimately, these insights in metabolic changes may provide leads for pathophysiology and therapy. Databases: Transcriptomics data are available via GEO database with identifier GSE138379, and proteomics data are available via ProteomeXchange with identifier PXD015518.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view