SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Giagnoni Laura) "

Search: WFRF:(Giagnoni Laura)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Kumpiene, Jurate, et al. (author)
  • Assessment of Methods for Determining Bioavailability of Trace Elements in Soils : A Review
  • 2017
  • In: Pedosphere. - : Elsevier. - 1002-0160 .- 2210-5107. ; 27:3, s. 389-406
  • Journal article (peer-reviewed)abstract
    • Trace element-contaminated soils (TECSs) are one of the consequences of the past industrial development worldwide. Excessive exposure to trace elements (TEs) represents a permanent threat to ecosystems and humans worldwide owing to the capacity of metal(loid)s to cross the cell membranes of living organisms and of human epithelia, and their interference with cell metabolism. Quantification of TE bioavailability in soils is complicated due to the polyphasic and reactive nature of soil constituents. To unravel critical factors controlling soil TE bioavailability and to quantify the ecological toxicity of TECSs, TEs are pivotal for evaluating excessive exposure or deficiencies and controlling the ecological risks. While current knowledge on TE bioavailability and related cumulative consequences is growing, the lack of an integrated use of this concept still hinders its utilization for a more holistic view of ecosystem vulnerability and risks for human health. Bioavailability is not generally included in models for decision making in the appraisal of TECS remediation options. In this review we describe the methods for determining the TE bioavailability and technological developments, gaps in current knowledge, and research needed to better understand how TE bioavailability can be controlled by sustainable TECS management altering key chemical properties, which would allow policy decisions for environmental protection and risk management
  •  
2.
  • Touceda-Gonzalez, M., et al. (author)
  • Microbial community structure and activity in trace elementcontaminatedsoils phytomanaged by Gentle Remediation Options (GRO)
  • 2017
  • In: Environmental Pollution. - : Elsevier. - 0269-7491 .- 1873-6424. ; 231:1, s. 237-251
  • Journal article (peer-reviewed)abstract
    • Gentle remediation options (GRO) are based on the combined use of plants, associated microorganisms and soil amendments, which can potentially restore soil functions and quality. We studied the effects of three GRO (aided-phytostabilisation, in situ stabilisation and phytoexclusion, and aided-phytoextraction) on the soil microbial biomass and respiration, the activities of hydrolase enzymes involved in the biogeochemical cycles of C, N, P, and S, and bacterial community structure of trace element contaminated soils (TECS) from six field trials across Europe. Community structure was studied using denaturing gradient gel electrophoresis (DGGE) fingerprinting of Bacteria, α- and β-Proteobacteria, Actinobacteria and Streptomycetaceae, and sequencing of DGGE bands characteristic of specific treatments. The number of copies of genes involved in ammonia oxidation and denitrification were determined by qPCR.Phytomanagement increased soil microbial biomass at three sites and respiration at the Biogeco site (France). Enzyme activities were consistently higher in treated soils compared to untreated soils at the Biogeco site. At this site, microbial biomass increased from 696 to 2352 mg ATP kg−1 soil, respiration increased from 7.4 to 40.1 mg C-CO2 kg−1 soil d−1, and enzyme activities were 2–11-fold higher in treated soils compared to untreated soil. Phytomanagement induced shifts in the bacterial community structure at both, the total community and functional group levels, and generally increased the number of copies of genes involved in the N cycle (nirK, nirS, nosZ, and amoA). The influence of the main soil physico-chemical properties and trace element availability were assessed and eventual site-specific effects elucidated. Overall, our results demonstrate that phytomanagement of TECS influences soil biological activity in the long term.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view