SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Gonzalez Voyer A.) "

Search: WFRF:(Gonzalez Voyer A.)

  • Result 1-10 of 10
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Zhang, Q, et al. (author)
  • Autoantibodies against type I IFNs in patients with critical influenza pneumonia
  • 2022
  • In: The Journal of experimental medicine. - : Rockefeller University Press. - 1540-9538 .- 0022-1007. ; 219:11
  • Journal article (peer-reviewed)abstract
    • Autoantibodies neutralizing type I interferons (IFNs) can underlie critical COVID-19 pneumonia and yellow fever vaccine disease. We report here on 13 patients harboring autoantibodies neutralizing IFN-α2 alone (five patients) or with IFN-ω (eight patients) from a cohort of 279 patients (4.7%) aged 6–73 yr with critical influenza pneumonia. Nine and four patients had antibodies neutralizing high and low concentrations, respectively, of IFN-α2, and six and two patients had antibodies neutralizing high and low concentrations, respectively, of IFN-ω. The patients’ autoantibodies increased influenza A virus replication in both A549 cells and reconstituted human airway epithelia. The prevalence of these antibodies was significantly higher than that in the general population for patients <70 yr of age (5.7 vs. 1.1%, P = 2.2 × 10−5), but not >70 yr of age (3.1 vs. 4.4%, P = 0.68). The risk of critical influenza was highest in patients with antibodies neutralizing high concentrations of both IFN-α2 and IFN-ω (OR = 11.7, P = 1.3 × 10−5), especially those <70 yr old (OR = 139.9, P = 3.1 × 10−10). We also identified 10 patients in additional influenza patient cohorts. Autoantibodies neutralizing type I IFNs account for ∼5% of cases of life-threatening influenza pneumonia in patients <70 yr old.
  •  
3.
  • Gonzalez-Voyer, A., et al. (author)
  • Evolution of acoustic and visual signals in Asian barbets
  • 2013
  • In: Journal of Evolutionary Biology. - : Wiley. - 1010-061X .- 1420-9101. ; 26:3, s. 647-659
  • Journal article (peer-reviewed)abstract
    • The study of animal communication systems is an important step towards gaining greater understanding of the processes influencing diversification because signals often play an important role in mate choice and can lead to reproductive isolation. Signal evolution can be influenced by a diversity of factors such as biophysical constraints on the emitter, the signalling environment, or selection to avoid heterospecific matings. Furthermore, because signals can be costly to produce, trade-offs may exist between different types of signals. Here, we apply phylogenetic comparative analyses to study the evolution of acoustic and visual signals in Asian barbets, a clade of non-Passerine, forest-dependent birds. Our results suggest that evolution of acoustic and visual signals in barbets is influenced by diverse factors, such as morphology and signalling environment, suggesting a potential effect of sensory drive. We found no trade-offs between visual and acoustic signals. Quite to the contrary, more colourful species sing significantly longer songs. Song characteristics presented distinct patterns of evolution. Song frequency diverged early on and the rate of evolution of this trait appears to be constrained by body size. On the other hand, characteristics associated with length of the song presented evidence for more recent divergence. Finally, our results indicate that there is a spatial component to the evolution of visual signals, and that visual signals are more divergent between closely related taxa than acoustic signals. Hence, visual signals in these species could play a role in speciation or reinforcement of reproductive isolation following secondary contacts.
  •  
4.
  • Amcoff, Mirjam, et al. (author)
  • Evolution of egg dummies in Tanganyikan cichlid fishes : the roles of parental care and sexual selection
  • 2013
  • In: Journal of Evolutionary Biology. - : Wiley. - 1010-061X .- 1420-9101. ; 26:11, s. 2369-2382
  • Research review (peer-reviewed)abstract
    • Sexual selection has been suggested to be an important driver of speciation in cichlid fishes of the Great Lakes of Africa, and the presence of male egg dummies is proposed to have played a key role. Here, we investigate how mouthbrooding and egg dummies have evolved in Tanganyikan cichlids, the lineage which seeded the other African radiations, with a special emphasis on the egg dummies. Using modern phylogenetic comparative analyses and a phylogeny including 86% of the 200 described species, we provide formal evidence demonstrating correlated evolution between mouthbrooding and egg dummies in Tanganyikan cichlids. These results concur with existing evidence, suggesting that egg dummies have evolved through sensory exploitation. We also demonstrate that there is a strong evolutionary correlation between the presence of egg dummies and both pre- and post-copulatory sexual selection. Moreover, egg dummy evolution was contingent on the intensity of pre- and post-copulatory sexual selection in Tanganyikan cichlids. In sum, our results provide evidence supporting the hypothesis of egg dummies evolving through sensory exploitation and highlight the role of sexual selection in favouring the evolution and maintenance of this trait.
  •  
5.
  • Fitzpatrick, J. L., et al. (author)
  • Male Contest Competition And The Coevolution Of Weaponry And Testes In Pinnipeds
  • 2012
  • In: Evolution. - : Wiley. - 0014-3820 .- 1558-5646. ; 66:11, s. 3595-3604
  • Journal article (peer-reviewed)abstract
    • Male reproductive success is influenced by competitive interactions during precopulatory and postcopulatory selective episodes. Consequently, males can gain reproductive advantages during precopulatory contest competition by investing in weaponry and during postcopulatory sperm competition by investing in ejaculates. However, recent theory predicts male expenditure on weaponry and ejaculates should be subject to a trade-off, and should vary under increasing risk and intensity of sperm competition. Here, we provide the first comparative analysis of the prediction that expenditure on weaponry should be negatively associated with expenditure on testes mass. Specifically, we assess how sexual selection influences the evolution of primary and secondary sexual traits among pinnipeds (seals, sea lions, and walruses). Using recently developed comparative methods, we demonstrate that sexual selection promotes rapid divergence in body mass, sexual size dimorphism (SSD), and genital morphology. We then show that genital length appears to be positively associated with the strength of postcopulatory sexual selection. However, subsequent analyses reveal that both genital length and testes mass are negatively associated with investment in precopulatory weaponry. Thus, our results are congruent with recent theoretical predictions of contest-based sperm competition models. We discuss the possible role of trade-offs and allometry in influencing patterns of reproductive trait evolution in pinnipeds.
  •  
6.
  • Fitzpatrick, J. L., et al. (author)
  • Sexual selection uncouples the evolution of brain and body size in pinnipeds
  • 2012
  • In: Journal of Evolutionary Biology. - : Wiley. - 1010-061X .- 1420-9101. ; 25:7, s. 1321-1330
  • Journal article (peer-reviewed)abstract
    • The size of the vertebrate brain is shaped by a variety of selective forces. Although larger brains (correcting for body size) are thought to confer fitness advantages, energetic limitations of this costly organ may lead to trade-offs, for example as recently suggested between sexual traits and neural tissue. Here, we examine the patterns of selection on male and female brain size in pinnipeds, a group where the strength of sexual selection differs markedly among species and between the sexes. Relative brain size was negatively associated with the intensity of sexual selection in males but not females. However, analyses of the rates of body and brain size evolution showed that this apparent trade-off between sexual selection and brain mass is driven by selection for increasing body mass rather than by an actual reduction in male brain size. Our results suggest that sexual selection has important effects on the allometric relationships of neural development.
  •  
7.
  • Gonzalez-Voyer, A., et al. (author)
  • Correlates of species richness in the largest Neotropical amphibian radiation
  • 2011
  • In: Journal of Evolutionary Biology. - : Wiley. - 1010-061X .- 1420-9101. ; 24:5, s. 931-942
  • Journal article (peer-reviewed)abstract
    • Although tropical environments are often considered biodiversity hotspots, it is precisely in such environments where least is known about the factors that drive species richness. Here, we use phylogenetic comparative analyses to study correlates of species richness for the largest Neotropical amphibian radiation: New World direct-developing frogs. Clade-age and species richness were nonsignficantly, negatively correlated, suggesting that clade age alone does not explain among-clade variation in species richness. A combination of ecological and morphological traits explained 65% of the variance in species richness. A more vascularized ventral skin, the ability to colonize high-altitude ranges, encompassing a large variety of vegetation types, correlated significantly with species richness, whereas larger body size was marginally correlated with species richness. Hence, whereas high-altitude ranges play a role in shaping clade diversity in the Neotropics, intrinsic factors, such as skin structures and possibly body size, might ultimately determine which clades are more speciose than others.
  •  
8.
  • Jiménez-Ortega, Dante, et al. (author)
  • Long life evolves in large-brained bird lineages
  • 2020
  • In: Evolution. - : Wiley. - 0014-3820 .- 1558-5646. ; 74:12, s. 2617-2628
  • Journal article (peer-reviewed)abstract
    • The brain is an energetically costly organ that consumes a disproportionate amount of resources. Species with larger brains relative to their body size have slower life histories, with reduced output per reproductive event and delayed development times that can be offset by increasing behavioral flexibility. The cognitive buffer hypothesis maintains that large brain size decreases extrinsic mortality due to greater behavioral flexibility, leading to a longer lifespan. Alternatively, slow life histories, and long lifespan can be a pre-adaptation for the evolution of larger brains. Here, we use phylogenetic path analysis to contrast different evolutionary scenarios and disentangle direct and indirect relationships between brain size, body size, life history, and longevity across 339 altricial and precocial bird species. Our results support both a direct causal link between brain size and lifespan, and an indirect effect via other life history traits. These results indicate that large brain size engenders longer life, as proposed by the cognitive buffer hypothesis.
  •  
9.
  • Maklakov, Alexei A., et al. (author)
  • Brains and the city : big-brained passerine birds succeed in urban environments
  • 2011
  • In: Biology Letters. - : The Royal Society. - 1744-9561 .- 1744-957X. ; 7:5, s. 730-732
  • Journal article (peer-reviewed)abstract
    • Urban regions are among the most human-altered environments on Earth and they are poised for rapid expansion following population growth and migration. Identifying the biological traits that determine which species are likely to succeed in urbanized habitats is important for predicting global trends in biodiversity. We provide the first evidence for the intuitive yet untested hypothesis that relative brain size is a key factor predisposing animals to successful establishment in cities. We apply phylogenetic mixed modelling in a Bayesian framework to show that passerine species that succeed in colonizing at least one of 12 European cities are more likely to belong to big-brained lineages than species avoiding these urban areas. These data support findings linking relative brain size with the ability to persist in novel and changing environments in vertebrate populations, and have important implications for our understanding of recent trends in biodiversity.
  •  
10.
  • Maklakov, Alexei A., et al. (author)
  • Brains and the city in passerine birds : re-analysis and confirmation of the original result
  • 2013
  • In: Biology Letters. - : The Royal Society. - 1744-9561 .- 1744-957X. ; 9:6, s. 20130859-
  • Journal article (peer-reviewed)abstract
    • Our original paper [1] included two Bayesian analyses [2] of the association between brain size and the probability of a passerine species of bird breeding in the city centre—at the level of families and at the level of individual species—with both analyses suggesting the same pattern. It has since been brought to our attention that in one of the analyses at the level of individual species, the residual variance was not fixed to 1 resulting in overestimation of the variance. We re-ran the analysis using fixed residual variance and the results support the original conclusion that relative brain size is associated with breeding in the city centre (ln brain size: posterior mean, 324.53, 95% credibility interval, 52.61–601.35; ln body size: posterior mean, −276.22, 95% credibility interval, −490.60 to −70.32). Furthermore, we applied a complimentary approach using logistic regression to test whether brain size predicts breeding in the city centre (yes/no) without accounting for phylogeny. This analysis also resulted in a significant positive association between brain size and breeding in city centres (likelihood ratio tests: ln brain size: d.f. = 1, χ2 = 11.08, p = 0.0009; ln body size: d.f. = 1, χ2 = 11.26, p = 0.0008). Thus, our results are confirmed by both phylogenetic and non-phylogenetic analyses.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view