SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Gougeon P.) "

Search: WFRF:(Gougeon P.)

  • Result 1-6 of 6
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Galluzzi, L, et al. (author)
  • Guidelines for the use and interpretation of assays for monitoring cell death in higher eukaryotes.
  • 2009
  • In: Cell death and differentiation. - : Springer Science and Business Media LLC. - 1476-5403 .- 1350-9047. ; 16:8, s. 1093-107
  • Research review (peer-reviewed)abstract
    • Cell death is essential for a plethora of physiological processes, and its deregulation characterizes numerous human diseases. Thus, the in-depth investigation of cell death and its mechanisms constitutes a formidable challenge for fundamental and applied biomedical research, and has tremendous implications for the development of novel therapeutic strategies. It is, therefore, of utmost importance to standardize the experimental procedures that identify dying and dead cells in cell cultures and/or in tissues, from model organisms and/or humans, in healthy and/or pathological scenarios. Thus far, dozens of methods have been proposed to quantify cell death-related parameters. However, no guidelines exist regarding their use and interpretation, and nobody has thoroughly annotated the experimental settings for which each of these techniques is most appropriate. Here, we provide a nonexhaustive comparison of methods to detect cell death with apoptotic or nonapoptotic morphologies, their advantages and pitfalls. These guidelines are intended for investigators who study cell death, as well as for reviewers who need to constructively critique scientific reports that deal with cellular demise. Given the difficulties in determining the exact number of cells that have passed the point-of-no-return of the signaling cascades leading to cell death, we emphasize the importance of performing multiple, methodologically unrelated assays to quantify dying and dead cells.
  •  
2.
  •  
3.
  • Butorin, Sergei, et al. (author)
  • Effect of Ag Doping on Electronic Structure of Cluster Compounds AgxMo9Se11 (x = 3.4, 3.9)
  • 2018
  • In: ACS Applied Energy Materials. - : American Chemical Society (ACS). - 2574-0962. ; 1:8, s. 4032-4039
  • Journal article (peer-reviewed)abstract
    • The electronic structure of AgxMo9Se11 as a potential material for thermoelectric applications was studied using high-energy-resolution fluorescence-detection X-ray absorption spectroscopy (HERFD-XAS) and the resonant inelastic X-ray scattering (RIXS) technique. The experiments were supported by first-principle calculations using density functional theory (DFT). The analysis of obtained spectra indicate the presence of subvalent (less than 1+) Ag in AgxMo9Se11. The advanced HERFD-XAS measurements allowed us to resolve the contribution of the electronic states at the Fermi level of AgxMo9Se11 and to monitor its dependence on the x value. A comparison of the experimental data with the results of the DFT calculations suggests the importance of the Ag2-type sites with the shortest Ag–Se distance for affecting the properties of AgxMo9Se11.
  •  
4.
  • Pecunia, Vincenzo, et al. (author)
  • Roadmap on energy harvesting materials
  • 2023
  • In: Journal of Physics. - : IOP Publishing. - 2515-7639. ; 6:4
  • Journal article (peer-reviewed)abstract
    • Ambient energy harvesting has great potential to contribute to sustainable development and address growing environmental challenges. Converting waste energy from energy-intensive processes and systems (e.g. combustion engines and furnaces) is crucial to reducing their environmental impact and achieving net-zero emissions. Compact energy harvesters will also be key to powering the exponentially growing smart devices ecosystem that is part of the Internet of Things, thus enabling futuristic applications that can improve our quality of life (e.g. smart homes, smart cities, smart manufacturing, and smart healthcare). To achieve these goals, innovative materials are needed to efficiently convert ambient energy into electricity through various physical mechanisms, such as the photovoltaic effect, thermoelectricity, piezoelectricity, triboelectricity, and radiofrequency wireless power transfer. By bringing together the perspectives of experts in various types of energy harvesting materials, this Roadmap provides extensive insights into recent advances and present challenges in the field. Additionally, the Roadmap analyses the key performance metrics of these technologies in relation to their ultimate energy conversion limits. Building on these insights, the Roadmap outlines promising directions for future research to fully harness the potential of energy harvesting materials for green energy anytime, anywhere.
  •  
5.
  • Arsenault, B., et al. (author)
  • Aluminum protective coatings - Fatigue and bond strength properties with respect to surface preparation techniques : Laser ablation, shot peening and grit blasting
  • 2006
  • In: Canadian metallurgical quarterly. - 0008-4433 .- 1879-1395. ; 45:1, s. 49-58
  • Journal article (peer-reviewed)abstract
    • Aluminum coatings can provide galvanic cathodic protection for several metals and alloys. In order to be a suitable protective solution on structural components, the mechanical integrity must be preserved. In particular, the fatigue properties are a challenge for thermal spray protective coatings on mechanical structures. To address the issue of the fatigue integrity of 7075 aluminum alloy with an arc sprayed protective coating, different surface preparations prior to arc spraying were considered. In the present work, a feasibility study was performed using laser ablation as a surface preparation technique before or during arc spraying of coatings through collaboration between the LERMPS laboratory in France, the National Research Council of Canada and the Royal Military College of Canada. Both fatigue and adhesive properties of aluminum coatings were evaluated in relation to substrate surface preparation techniques including laser ablation (PROTAL® process), grit blasting and shot peening. Results indicate that a combination of key conditions including using nitrogen as the arc spray gas, shot peening and proper laser energy density for ablation provides high fatigue resistance of metallic coated 7075 alloy substrates. Specimens prepared under these conditions show a similar fatigue resistance to uncoated substrates. © Canadian Institute of Mining, Metallurgy and Petroleum.
  •  
6.
  • Martins, I, et al. (author)
  • Anticancer chemotherapy and radiotherapy trigger both non-cell-autonomous and cell-autonomous death
  • 2018
  • In: Cell death & disease. - : Springer Science and Business Media LLC. - 2041-4889. ; 9:7, s. 716-
  • Journal article (peer-reviewed)abstract
    • Even though cell death modalities elicited by anticancer chemotherapy and radiotherapy have been extensively studied, the ability of anticancer treatments to induce non-cell-autonomous death has never been investigated. By means of multispectral imaging flow-cytometry-based technology, we analyzed the lethal fate of cancer cells that were treated with conventional anticancer agents and co-cultured with untreated cells, observing that anticancer agents can simultaneously trigger cell-autonomous and non-cell-autonomous death in treated and untreated cells. After ionizing radiation, oxaliplatin, or cisplatin treatment, fractions of treated cancer cell populations were eliminated through cell-autonomous death mechanisms, while other fractions of the treated cancer cells engulfed and killed neighboring cells through non-cell-autonomous processes, including cellular cannibalism. Under conditions of treatment with paclitaxel, non-cell-autonomous and cell-autonomous death were both detected in the treated cell population, while untreated neighboring cells exhibited features of apoptotic demise. The transcriptional activity of p53 tumor-suppressor protein contributed to the execution of cell-autonomous death, yet failed to affect the non-cell-autonomous death by cannibalism for the majority of tested anticancer agents, indicating that the induction of non-cell-autonomous death can occur under conditions in which cell-autonomous death was impaired. Altogether, these results reveal that chemotherapy and radiotherapy can induce both non-cell-autonomous and cell-autonomous death of cancer cells, highlighting the heterogeneity of cell death responses to anticancer treatments and the unsuspected potential contribution of non-cell-autonomous death to the global effects of anticancer treatment.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-6 of 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view