SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Granett B.) "

Search: WFRF:(Granett B.)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Pezzotta, A., et al. (author)
  • Euclid preparation XLI. Galaxy power spectrum modelling in real space
  • 2024
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 687
  • Journal article (peer-reviewed)abstract
    • We investigate the accuracy of the perturbative galaxy bias expansion in view of the forthcoming analysis of the Euclid spectroscopic galaxy samples. We compare the performance of a Eulerian galaxy bias expansion using state-of-the-art prescriptions from the effective field theory of large-scale structure (EFTofLSS) with a hybrid approach based on Lagrangian perturbation theory and high-resolution simulations. These models are benchmarked against comoving snapshots of the flagship I N-body simulation at z = (0.9, 1.2, 1.5, 1.8), which have been populated with H alpha galaxies leading to catalogues of millions of objects within a volume of about 58 h(-3) Gpc(3). Our analysis suggests that both models can be used to provide a robust inference of the parameters (h, omega c) in the redshift range under consideration, with comparable constraining power. We additionally determine the range of validity of the EFTofLSS model in terms of scale cuts and model degrees of freedom. From these tests, it emerges that the standard third-order Eulerian bias expansion - which includes local and non-local bias parameters, a matter counter term, and a correction to the shot-noise contribution - can accurately describe the full shape of the real-space galaxy power spectrum up to the maximum wavenumber of k(max) = 0.45 h Mpc(-1), and with a measurement precision of well below the percentage level. Fixing either of the tidal bias parameters to physically motivated relations still leads to unbiased cosmological constraints, and helps in reducing the severity of projection effects due to the large dimensionality of the model. We finally show how we repeated our analysis assuming a volume that matches the expected footprint of Euclid, but without considering observational effects, such as purity and completeness, showing that we can get constraints on the combination (h, omega c) that are consistent with the fiducial values to better than the 68% confidence interval over this range of scales and redshifts.
  •  
2.
  • Adami, C., et al. (author)
  • The XXL Survey: XX. The 365 cluster catalogue
  • 2018
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 620
  • Journal article (peer-reviewed)abstract
    • Context. In the currently debated context of using clusters of galaxies as cosmological probes, the need for well-defined cluster samples is critical. Aims. The XXL Survey has been specifically designed to provide a well characterised sample of some 500 X-ray detected clusters suitable for cosmological studies. The main goal of present article is to make public and describe the properties of the cluster catalogue in its present state, as well as of associated catalogues of more specific objects such as super-clusters and fossil groups. Methods. Following from the publication of the hundred brightest XXL clusters, we now release a sample containing 365 clusters in total, down to a flux of a few 10-15 erg s-1 cm-2 in the [0.5-2] keV band and in a 1′ aperture. This release contains the complete subset of clusters for which the selection function is well determined plus all X-ray clusters which are, to date, spectroscopically confirmed. In this paper, we give the details of the follow-up observations and explain the procedure adopted to validate the cluster spectroscopic redshifts. Considering the whole XXL cluster sample, we have provided two types of selection, both complete in a particular sense: one based on flux-morphology criteria, and an alternative based on the [0.5-2] keV flux within 1 arcmin of the cluster centre. We have also provided X-ray temperature measurements for 80% of the clusters having a flux larger than 9 × 10-15 erg s-1 cm-2. Results. Our cluster sample extends from z ∼ 0 to z ∼ 1.2, with one cluster at z ∼ 2. Clusters were identified through a mean number of six spectroscopically confirmed cluster members. The largest number of confirmed spectroscopic members in a cluster is 41. Our updated luminosity function and luminosity-temperature relation are compatible with our previous determinations based on the 100 brightest clusters, but show smaller uncertainties. We also present an enlarged list of super-clusters and a sample of 18 possible fossil groups. Conclusions. This intermediate publication is the last before the final release of the complete XXL cluster catalogue when the ongoing C2 cluster spectroscopic follow-up is complete. It provides a unique inventory of medium-mass clusters over a 50 deg2 area out to z ∼ 1.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view