SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Grisard Arnaud) "

Search: WFRF:(Grisard Arnaud)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Manavaimaran, Balaji, et al. (author)
  • Investigation of OP-GaP Grown on OP-GaAs Templates Using Nondestructive Reciprocal Space Mapping
  • 2023
  • In: Crystals. - : MDPI AG. - 2073-4352. ; 13:2, s. 168-
  • Journal article (peer-reviewed)abstract
    • Orientation-patterned gallium phosphide (OP-GaP) has been grown heteroepitaxially on OP gallium arsenide (GaAs) templates using hydride vapor phase epitaxy (HVPE). The effect of OP-GaAs template fabrication methods of epitaxial-inversion and wafer bonding on the heteroepitaxial OP-GaP growth has been investigated. OP-GaP layers with a growth rate of up to 35 mu m/h and excellent domain fidelity were obtained. The growth rate and the domain fidelity have been revealed/studied by scanning electron microscope (SEM). In addition, we demonstrate that the crystalline quality of the individual domains, namely, the substrate-oriented domains (ODs) and the inverted domains (IDs), can be investigated by high-resolution x-ray diffraction reciprocal space mapping (HRXRDRSM), which can also indicate the domain fidelity. Attempts to increase the growth rate and improve the domain fidelity by increasing the III and V group precursors resulted in either an increase in the growth rate in the OP-GaP layers grown on epitaxial inversion OP-GaAs template at the expense of the domain crystalline quality and fidelity or an improvement in the crystalline quality of the domains at the expense of the growth rate in the OP-GaP layers grown on wafer-bonded OP-GaAs templates. In the case of OP-GaP grown on OP-GaAs templates prepared by epitaxial inversion, the crystalline quality of the ODs is better than that of the IDs, but it shows that the quality of the inverted layer in the template influences the quality and fidelity of the grown domains. To the authors' knowledge, exploitation of HRXRDRSM studies on OP-GaP to establish the crystalline quality of its individual domains (ODs and IDs) is the first of its kind. OP-ZnSe grown on OP-GaAs templates has also been included in this study to further emphasize the potential of this method. We propose from this study that once the growth rate is optimized from SEM studies, HRXRDRSM analysis alone can be used to assess the structural quality and to infer the domain fidelity of the OP structures.
  •  
2.
  •  
3.
  • Strömberg, Axel, et al. (author)
  • Direct Heteroepitaxy of Orientation-Patterned GaP on GaAs by Hydride Vapor Phase Epitaxy for Quasi-Phase-Matching Applications
  • 2020
  • In: Physica status solidi. A, Applied research. - : Wiley. - 0031-8965 .- 1521-396X. ; 217:3, s. 1900627-
  • Journal article (peer-reviewed)abstract
    • Heteroepitaxial growth of orientation‐patterned (OP) GaP (OP‐GaP) on wafer‐bonded OP‐GaAs templates is investigated by low‐pressure hydride vapor phase epitaxy for exploiting the beneficial low two‐photon absorption properties of GaP with the matured processing technologies and higher‐quality substrates afforded by GaAs. First, GaP homoepitaxial selective area growth (SAG) is conducted to investigate the dependence of GaP SAG on precursor flows and temperatures toward achieving a high vertical growth rate and equal lateral growth rate in the [110] and [-110]‐oriented openings. Deteriorated domain fidelity is observed in the heteroepitaxial growth of OP‐GaP on OP‐GaAs due to the enhanced growth rate on domain boundaries by threading dislocations generated by 3.6% lattice matching in GaP/GaAs. The dependence of dislocation dynamics on heteroepitaxial growth conditions of OP‐GaP on OP‐GaAs is studied. High OP‐GaP domain fidelity associated with low threading dislocation density and a growth rate of 57 μm h−1 are obtained by increasing GaCl flow. The properties of heteroepitaxial GaP on semi‐insulating GaAs is studied by terahertz time‐domain spectroscopy in the terahertz range. The outcomes of this work will pave the way to exploit heteroepitaxial OP‐GaP growth on OP‐GaAs for frequency conversion by quasi‐phase‐matching in the mid‐infrared and terahertz regions.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view