SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Grossman Jonas) "

Search: WFRF:(Grossman Jonas)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Bostanci, Nagihan, et al. (author)
  • Label-free quantitative proteomics reveals differentially regulated proteins in experimental gingivitis
  • 2013
  • In: Journal of Proteome Research. - : American Chemical Society (ACS). - 1535-3893 .- 1535-3907. ; 2:12, s. 657-678
  • Journal article (peer-reviewed)abstract
    • We investigated the sequential protein expression in gingival crevicular fluid samples during the induction (I) and resolution (R) of experimental gingivitis. Periodontally and systemically healthy volunteers (n = 20) participated in a three-week experimental gingivitis protocol, followed by debridement and two weeks of regular plaque control. Gingival crevicular fluid (GCF) samples were collected at baseline, Day 7, 14, and 21 (induction; I-phase), and at Day 21, 25, 30, and 35 (resolution; R-phase). Liquid chromatography-tandem mass spectrometry (LC-MS/MS) for label-free quantitative proteomics was applied. A total of 287 proteins were identified including 254 human, 14 bacterial, 12 fungal, and 7 yeast proteins. Ontology analysis revealed proteins primarily involved in cytoskeletal rearrangements, immune response, antimicrobial function, protein degradation, and DNA binding. There was considerable variation in the number of proteins identified, both among subjects and within subjects across time points. After pooling of samples between subjects at each time point, the levels of 59 proteins in the I-phase and 73 proteins in the R-phase were quantified longitudinally. Our data demonstrate that LC-MS/MS label-free quantitative proteomics is valuable in the assessment of the protein content of the GCF and can facilitate a better understanding of the molecular mechanisms involved in the induction and resolution of plaque-induced gingival inflammation in humans.
  •  
2.
  • Soukarieh, Fadi, et al. (author)
  • Design and Evaluation of New Quinazolin-4(3H)-one Derived PqsR Antagonists as Quorum Sensing Quenchers in Pseudomonas aeruginosa
  • 2021
  • In: ACS - Infectious Diseases. - : American Chemical Society (ACS). - 2373-8227. ; 7:9, s. 2666-2685
  • Journal article (peer-reviewed)abstract
    • P. aeruginosa (PA) continues to pose a threat to global public health due to its high levels of antimicrobial resistance (AMR). The ongoing AMR crisis has led to an alarming shortage of effective treatments for resistant microbes, and hence there is a pressing demand for the development of novel antimicrobial interventions. The potential use of antivirulence therapeutics to tackle bacterial infections has attracted considerable attention over the past decades as they hamper the pathogenicity of target microbes with reduced selective pressure, minimizing the emergence of resistance. One such approach is to interfere with the PA pqs quorum sensing system which upon the interaction of PqsR, a Lys-R type transcriptional regulator, with its cognate signal molecules 4-hydroxy-2-heptylquinoline (HHQ) and 2-heptyl-3-hydroxy-4-quinolone (PQS), governs multiple virulence traits and host-microbe interactions. In this study, we report the hit identification and optimization of PqsR antagonists using virtual screening coupled with whole cell assay validation. The optimized hit compound 61 ((R)-2-(4-(3-(6-chloro-4-oxoquinazolin-3(4H)-yl)-2-hydroxypropoxy)phenyl)acetonitrile) was found to inhibit the expression of the PA P-pqsA promoter controlled by PqsR with an IC50 of 1 mu M. Using isothermal titration calorimetry, a K-d of 10 nM for the P-qsR ligand binding domain (PqsR(LBD)) was determined for 61. Furthermore, the crystal structure of 61 with PqsR(LBD) was attained with a resolution of 2.65 angstrom. Compound 61 significantly reduced levels of pyocyanin, PQS, and HHQ in PAO1-L, PA14 lab strains and PAK6085 clinical isolate. Furthermore, this compound potentiated the effect of ciprofloxacin in early stages of biofilm treatment and in Galleria mellonella infected with PA. Altogether, this data shows 61 as a potent PqsR inhibitor with potential for hit to lead optimization toward the identification of a PA QS inhibitor which can be advanced into preclinical development.
  •  
3.
  • Soukarieh, Fadi, et al. (author)
  • Hit Identification of New Potent PqsR Antagonists as Inhibitors of Quorum Sensing in Planktonic and Biofilm Grown Pseudomonas aeruginosa
  • 2020
  • In: Frontiers in Chemistry. - : FRONTIERS MEDIA SA. - 2296-2646. ; 8
  • Journal article (peer-reviewed)abstract
    • Current treatments for Pseudomonas aeruginosa infections are becoming less effective because of the increasing rates of multi-antibiotic resistance. Pharmacological targeting of virulence through inhibition of quorum sensing (QS) dependent virulence gene regulation has considerable therapeutic potential. In P. aeruginosa, the pqs QS system regulates the production of multiple virulence factors as well as biofilm maturation and is a promising approach for developing antimicrobial adjuvants for combatting drug resistance. In this work, we report the hit optimisation for a series of potent novel inhibitors of PqsR, a key regulator of the pqs system, bearing a 2-((5-methyl-5H-[1,2,4]triazino[5,6-b]indol-3-yl)thio) acetamide scaffold. The initial hit compound 7 (PAO1-L IC50 0.98 +/- 0.02 mu M, PA14 inactive at 10 mu M) was obtained through a virtual screening campaign performed on the PqsR ligand binding domain using the University of Nottingham Managed Chemical Compound Collection. Hit optimisation gave compounds with enhanced potency against strains PAO1-L and PA14, evaluated using P. aeruginosa pqs-based QS bioreporter assays. Compound 40 (PAO1-L IC50 0.25 +/- 0.12 mu M, PA14 IC50 0.34 +/- 0.03 mu M) is one of the most potent PqsR antagonists reported showing significant inhibition of P. aeruginosa pyocyanin production and pqs system signaling in both planktonic cultures and biofilms. The co-crystal structure of 40 with the PqsR ligand binding domain revealed the specific binding interactions occurring between inhibitor and this key regulatory protein.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view