SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Guenther Heinz) "

Search: WFRF:(Guenther Heinz)

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • de Vera, Jean-Pierre, et al. (author)
  • Limits of Life and the Habitability of Mars : The ESA Space Experiment BIOMEX on the ISS
  • 2019
  • In: Astrobiology. - : Mary Ann Liebert. - 1531-1074 .- 1557-8070. ; 19:2, s. 145-157
  • Journal article (other academic/artistic)abstract
    • BIOMEX (BIOlogy and Mars EXperiment) is an ESA/Roscosmos space exposure experiment housed within the exposure facility EXPOSE-R2 outside the Zvezda module on the International Space Station (ISS). The design of the multiuser facility supports-among others-the BIOMEX investigations into the stability and level of degradation of space-exposed biosignatures such as pigments, secondary metabolites, and cell surfaces in contact with a terrestrial and Mars analog mineral environment. In parallel, analysis on the viability of the investigated organisms has provided relevant data for evaluation of the habitability of Mars, for the limits of life, and for the likelihood of an interplanetary transfer of life (theory of lithopanspermia). In this project, lichens, archaea, bacteria, cyanobacteria, snow/permafrost algae, meristematic black fungi, and bryophytes from alpine and polar habitats were embedded, grown, and cultured on a mixture of martian and lunar regolith analogs or other terrestrial minerals. The organisms and regolith analogs and terrestrial mineral mixtures were then exposed to space and to simulated Mars-like conditions by way of the EXPOSE-R2 facility. In this special issue, we present the first set of data obtained in reference to our investigation into the habitability of Mars and limits of life. This project was initiated and implemented by the BIOMEX group, an international and interdisciplinary consortium of 30 institutes in 12 countries on 3 continents. Preflight tests for sample selection, results from ground-based simulation experiments, and the space experiments themselves are presented and include a complete overview of the scientific processes required for this space experiment and postflight analysis. The presented BIOMEX concept could be scaled up to future exposure experiments on the Moon and will serve as a pretest in low Earth orbit.
  •  
3.
  • Giralt, Sergio, et al. (author)
  • American Society of Blood and Marrow Transplantation, European Society of Blood and Marrow Transplantation, Blood and Marrow Transplant Clinical Trials Network, and International Myeloma Working Group Consensus Conference on Salvage Hematopoietic Cell Transplantation in Patients with Relapsed Multiple Myeloma.
  • 2015
  • In: Biology of Blood and Marrow Transplantation. - : Elsevier BV. - 1083-8791. ; 21:12, s. 2039-2051
  • Journal article (peer-reviewed)abstract
    • In contrast to the upfront setting in which the role of high-dose therapy with autologous hematopoietic cell transplantation (HCT) as consolidation of a first remission in patients with multiple myeloma (MM) is well established, the role of high-dose therapy with autologous or allogeneic HCT has not been extensively studied in MM patients relapsing after primary therapy. The International Myeloma Working Group together with the Blood and Marrow Transplant Clinical Trials Network, the American Society of Blood and Marrow Transplantation, and the European Society of Blood and Marrow Transplantation convened a meeting of MM experts to: (1) summarize current knowledge regarding the role of autologous or allogeneic HCT in MM patients progressing after primary therapy, (2) propose guidelines for the use of salvage HCT in MM, (3) identify knowledge gaps, (4) propose a research agenda, and (5) develop a collaborative initiative to move the research agenda forward. After reviewing the available data, the expert committee came to the following consensus statement for salvage autologous HCT: (1) In transplantation-eligible patients relapsing after primary therapy that did NOT include an autologous HCT, high-dose therapy with HCT as part of salvage therapy should be considered standard; (2) High-dose therapy and autologous HCT should be considered appropriate therapy for any patients relapsing after primary therapy that includes an autologous HCT with initial remission duration of more than 18 months; (3) High-dose therapy and autologous HCT can be used as a bridging strategy to allogeneic HCT; (4) The role of postsalvage HCT maintenance needs to be explored in the context of well-designed prospective trials that should include new agents, such as monoclonal antibodies, immune-modulating agents, and oral proteasome inhibitors; (5) Autologous HCT consolidation should be explored as a strategy to develop novel conditioning regimens or post-HCT strategies in patients with short (less than 18 months remissions) after primary therapy; and (6) Prospective randomized trials need to be performed to define the role of salvage autologous HCT in patients with MM relapsing after primary therapy comparing it to "best non-HCT" therapy. The expert committee also underscored the importance of collecting enough hematopoietic stem cells to perform 2 transplantations early in the course of the disease. Regarding allogeneic HCT, the expert committee agreed on the following consensus statements: (1) Allogeneic HCT should be considered appropriate therapy for any eligible patient with early relapse (less than 24 months) after primary therapy that included an autologous HCT and/or high-risk features (ie, cytogenetics, extramedullary disease, plasma cell leukemia, or high lactate dehydrogenase); (2) Allogeneic HCT should be performed in the context of a clinical trial if possible; (3) The role of postallogeneic HCT maintenance therapy needs to be explored in the context of well-designed prospective trials; and (4) Prospective randomized trials need to be performed to define the role salvage allogeneic HCT in patients with MM relapsing after primary therapy.
  •  
4.
  • Semedo, Alvaro, et al. (author)
  • Projection of Global Wave Climate Change toward the End of the Twenty-First Century
  • 2013
  • In: Journal of Climate. - 0894-8755 .- 1520-0442. ; 26:21, s. 8269-8288
  • Journal article (peer-reviewed)abstract
    • Wind-generated waves at the sea surface are of outstanding importance for both their practical relevance in many aspects, such as coastal erosion, protection, or safety of navigation, and for their scientific relevance in modifying fluxes at the air-sea interface. So far, long-term changes in ocean wave climate have been studied mostly from a regional perspective with global dynamical studies emerging only recently. Here a global wave climate study is presented, in which a global wave model [Wave Ocean Model (WAM)] is driven by atmospheric forcing from a global climate model (ECHAM5) for present-day and potential future climate conditions represented by the Intergovernmental Panel for Climate Change (IPCC) A1B emission scenario. It is found that changes in mean and extreme wave climate toward the end of the twenty-first century are small to moderate, with the largest signals being a poleward shift in the annual mean and extreme significant wave heights in the midlatitudes of both hemispheres, more pronounced in the Southern Hemisphere and most likely associated with a corresponding shift in midlatitude storm tracks. These changes are broadly consistent with results from the few studies available so far. The projected changes in the mean wave periods, associated with the changes in the wave climate in the middle to high latitudes, are also shown, revealing a moderate increase in the equatorial eastern side of the ocean basins. This study presents a step forward toward a larger ensemble of global wave climate projections required to better assess robustness and uncertainty of potential future wave climate change.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view