SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Gupta Anubha) "

Search: WFRF:(Gupta Anubha)

  • Result 1-10 of 15
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Atabaki-Pasdar, Naeimeh, et al. (author)
  • Inferring causal pathways between metabolic processes and liver fat accumulation: an IMI DIRECT study
  • 2021
  • Other publication (other academic/artistic)abstract
    • Type 2 diabetes (T2D) and non-alcoholic fatty liver disease (NAFLD) often co-occur. Defining causal pathways underlying this relationship may help optimize the prevention and treatment of both diseases. Thus, we assessed the strength and magnitude of the putative causal pathways linking dysglycemia and fatty liver, using a combination of causal inference methods.Measures of glycemia, insulin dynamics, magnetic resonance imaging (MRI)-derived abdominal and liver fat content, serological biomarkers, lifestyle, and anthropometry were obtained in participants from the IMI DIRECT cohorts (n=795 with new onset T2D and 2234 individuals free from diabetes). UK Biobank (n=3641) was used for modelling and replication purposes. Bayesian networks were employed to infer causal pathways, with causal validation using two-sample Mendelian randomization.Bayesian networks fitted to IMI DIRECT data identified higher basal insulin secretion rate (BasalISR) and MRI-derived excess visceral fat (VAT) accumulation as the features of dysmetabolism most likely to cause liver fat accumulation; the unconditional probability of fatty liver (>5%) increased significantly when conditioning on high levels of BasalISR and VAT (by 23%, 32% respectively; 40% for both). Analyses in UK Biobank yielded comparable results. MR confirmed most causal pathways predicted by the Bayesian networks.Here, BasalISR had the highest causal effect on fatty liver predisposition, providing mechanistic evidence underpinning the established association of NAFLD and T2D. BasalISR may represent a pragmatic biomarker for NAFLD prediction in clinical practice.Competing Interest StatementHR is an employee and shareholder of Sanofi. MIM: The views expressed in this article are those of the author(s) and not necessarily those of the NHS, the NIHR, or the Department of Health. MIM has served on advisory panels for Pfizer, NovoNordisk and Zoe Global, has received honoraria from Merck, Pfizer, Novo Nordisk and Eli Lilly, and research funding from Abbvie, Astra Zeneca, Boehringer Ingelheim, Eli Lilly, Janssen, Merck, NovoNordisk, Pfizer, Roche, Sanofi Aventis, Servier, and Takeda. As of June 2019, MIM is an employee of Genentech, and a holder of Roche stock. AM is a consultant for Lilly and has received research grants from several diabetes drug companies. PWF has received research grants from numerous diabetes drug companies and fess as consultant from Novo Nordisk, Lilly, and Zoe Global Ltd. He is currently the Scientific Director in Patient Care at the Novo Nordisk Foundation. Other authors declare non competing interests.Funding StatementThe work leading to this publication has received support from the Innovative Medicines Initiative Joint Undertaking under grant agreement 115317 (DIRECT) resources of which are composed of financial contribution from the European Union Seventh Framework Programme (FP7/2007-2013) and EFPIA companies in kind contribution. NAP is supported in part by Henning och Johan Throne-Holsts Foundation, Hans Werthen Foundation, an IRC award from the Swedish Foundation for Strategic Research and a European Research Council award ERC-2015-CoG - 681742_NASCENT. HPM is supported by an IRC award from the Swedish Foundation for Strategic Research and a European Research Council award ERC-2015-CoG - 681742_NASCENT. AGJ is supported by an NIHR Clinician Scientist award (17/0005624). RK is funded by the Novo Nordisk Foundation (NNF18OC0031650) as part of a postdoctoral fellowship, an IRC award from the Swedish Foundation for Strategic Research and a European Research Council award ERC-2015-CoG - 681742_NASCENT. AK, PM, HF, JF and GNG are supported by an IRC award from the Swedish Foundation for Strategic Research and a European Research Council award ERC-2015-CoG - 681742_NASCENT. TJM is funded by an NIHR clinical senior lecturer fellowship. S.Bru acknowledges support from the Novo Nordisk Foundation (grants NNF17OC0027594 and NNF14CC0001). ATH is a Wellcome Trust Senior Investigator and is also supported by the NIHR Exeter Clinical Research Facility. JMS acknowledges support from Science for Life Laboratory (Plasma Profiling Facility), Knut and Alice Wallenberg Foundation (Human Protein Atlas) and Erling-Persson Foundation (KTH Centre for Precision Medicine). MIM is supported by the following grants; Wellcome (090532, 098381, 106130, 203141, 212259); NIH (U01-DK105535). PWF is supported by an IRC award from the Swedish Foundation for Strategic Research and a European Research Council award ERC-2015-CoG - 681742_NASCENT. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:Approval for the study protocol was obtained from each of the regional research ethics review boards separately (Lund, Sweden: 20130312105459927, Copenhagen, Denmark: H-1-2012-166 and H-1-2012-100, Amsterdam, Netherlands: NL40099.029.12, Newcastle, Dundee and Exeter, UK: 12/NE/0132), and all participants provided written informed consent at enrolment. The research conformed to the ethical principles for medical research involving human participants outlined in the Declaration of Helsinki.All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesAuthors agree to make data and materials supporting the results or analyses presented in their paper available upon reasonable request
  •  
2.
  • Fridén, Markus, et al. (author)
  • In vitro methods for estimating unbound drug concentrations in the brain interstitial and intracellular fluids
  • 2007
  • In: Drug Metabolism And Disposition. - : American Society for Pharmacology & Experimental Therapeutics (ASPET). - 0090-9556 .- 1521-009X. ; 35:9, s. 1711-1719
  • Journal article (peer-reviewed)abstract
    • Concentrations of unbound drug in the interstitial fluid of the brain are not rapidly measured in vivo. Therefore, measurement of total drug levels, i.e., the amount of drug per gram of brain, has been a common but unhelpful practice in drug discovery programs relating to central drug effects. This study was designed to evaluate in vitro techniques for faster estimation of unbound drug concentrations. The parameter that relates the total drug level and the unbound interstitial fluid concentration is the unbound volume of distribution in the brain (V(u,brain)). It was measured in vitro for 15 drugs using brain slice uptake and brain homogenate binding methods. The results were validated in vivo by comparison with V(u,brain) microdialysis results. The slice method results were within a 3-fold range of the in vivo results for all but one compound, suggesting that this method could be used in combination with total drug levels to estimate unbound interstitial fluid concentrations within reasonable limits. Although successful in 10 of 15 cases, the brain homogenate binding method failed to estimate the V(u,brain) of drugs that reside predominantly in the interstitial space or compounds that are accumulated intracellularly. Use of the simple methods described in this article will 1) allow quantification of active transport at the blood-brain barrier in vivo, 2) facilitate the establishment of a relationship between in vitro potency and in vivo activity for compounds acting on central nervous system targets, and 3) provide information on intracellular concentrations of unbound drug.
  •  
3.
  • Gudmundsdottir, Valborg, et al. (author)
  • Whole blood co-expression modules associate with metabolic traits and type 2 diabetes : an IMI-DIRECT study
  • 2020
  • In: Genome Medicine. - : BioMed Central. - 1756-994X. ; 12:1
  • Journal article (peer-reviewed)abstract
    • Background: The rising prevalence of type 2 diabetes (T2D) poses a major global challenge. It remains unresolved to what extent transcriptomic signatures of metabolic dysregulation and T2D can be observed in easily accessible tissues such as blood. Additionally, large-scale human studies are required to further our understanding of the putative inflammatory component of insulin resistance and T2D. Here we used transcriptomics data from individuals with (n = 789) and without (n = 2127) T2D from the IMI-DIRECT cohorts to describe the co-expression structure of whole blood that mainly reflects processes and cell types of the immune system, and how it relates to metabolically relevant clinical traits and T2D.Methods: Clusters of co-expressed genes were identified in the non-diabetic IMI-DIRECT cohort and evaluated with regard to stability, as well as preservation and rewiring in the cohort of individuals with T2D. We performed functional and immune cell signature enrichment analyses, and a genome-wide association study to describe the genetic regulation of the modules. Phenotypic and trans-omics associations of the transcriptomic modules were investigated across both IMI-DIRECT cohorts.Results: We identified 55 whole blood co-expression modules, some of which clustered in larger super-modules. We identified a large number of associations between these transcriptomic modules and measures of insulin action and glucose tolerance. Some of the metabolically linked modules reflect neutrophil-lymphocyte ratio in blood while others are independent of white blood cell estimates, including a module of genes encoding neutrophil granule proteins with antibacterial properties for which the strongest associations with clinical traits and T2D status were observed. Through the integration of genetic and multi-omics data, we provide a holistic view of the regulation and molecular context of whole blood transcriptomic modules. We furthermore identified an overlap between genetic signals for T2D and co-expression modules involved in type II interferon signaling.Conclusions: Our results offer a large-scale map of whole blood transcriptomic modules in the context of metabolic disease and point to novel biological candidates for future studies related to T2D.
  •  
4.
  • Gupta, Anubha, et al. (author)
  • Brain distribution of cetirizine enantiomers : comparison of three different tissue-to-plasma partition coefficients : K(p), K(p,u), and K(p,uu)
  • 2006
  • In: Drug Metabolism And Disposition. - : American Society for Pharmacology & Experimental Therapeutics (ASPET). - 0090-9556 .- 1521-009X. ; 34:2, s. 318-323
  • Journal article (peer-reviewed)abstract
    • The objective of this study was to compare the blood-brain barrier (BBB) transport and brain distribution of levo- (R-CZE) and dextrocetirizine (S-CZE). Microdialysis probes, calibrated using retrodialysis by drug, were placed into the frontal cortex and right jugular vein of eight guinea pigs. Racemic CZE (2.7 mg/kg) was administered as a 60-min i.v. infusion. Unbound and total concentrations of the enantiomers were measured in blood and brain with liquid chromatography-tandem mass spectrometry. The brain distribution of the CZE enantiomers were compared using the parameters K(p,) K(p,u,) K(p,uu), and V(u,br). K(p) compares total brain concentration to total plasma concentration, K(p,u) compensates for binding in plasma, whereas K(p,uu) also compensates for binding within the brain tissue and directly quantifies the transport across the BBB. V(u,br) describes binding within the brain. The stereoselective brain distribution indicated by the K(p) of 0.22 and 0.04 for S- and R-CZE, respectively, was caused by different binding to plasma proteins. The transport of the CZE enantiomers across the BBB was not stereoselective, since the K(p,uu) was 0.17 and 0.14 (N.S.) for S- and R-CZE, respectively. The K(p,uu) values show that the enantiomers are effluxed to a large extent across the BBB. The V(u,br) of approximately 2.5 ml/g brain was also similar for both the enantiomers, and the value indicates high binding to brain tissue. Thus, when determining stereoselectivity in brain distribution, it is important to study all factors governing this distribution, binding in blood and brain, and the BBB equilibrium.
  •  
5.
  •  
6.
  • Gupta, Anubha, et al. (author)
  • Peripheral and central H1 histamine receptor occupancy by levocetirizine, a non-sedating antihistamine; a time course study in the guinea pig
  • 2007
  • In: British Journal of Pharmacology. - : Wiley. - 0007-1188 .- 1476-5381. ; 151:7, s. 1129-1136
  • Journal article (peer-reviewed)abstract
    • BACKGROUND AND PURPOSE: The H(1) receptor occupancy (H1RO) in brain is an indicator of central side effects of antihistamines. Here, we determined the kinetics of central and peripheral H1RO by levocetirizine in relation to its brain and plasma concentration, and investigated the role of the blood-brain barrier in any delay in brain H1RO. EXPERIMENTAL APPROACH: Concentration-time profiles in plasma and brain were obtained after 0.1 and 1 mg kg(-1) oral doses of levocetirizine in guinea pigs. H1RO in brain was measured ex vivo using [3H]-mepyramine and, in the periphery, by measuring the degree of inhibition of histamine-induced contractions of isolated guinea pig ileum. KEY RESULTS: The concentration-time profile of levocetirizine indicated lower levels (partition coefficient, K(p)=0.06-0.08), higher t(max) (2-4 h vs 1-1.5 h) and longer terminal half-life (4-5.6 h vs 2.1-2.8 h) in brain than plasma. The H1RO at 0.1 and 1 mg kg(-1) were 75% and 97%, respectively, at 1 hr in the periphery and, in the brain, were <20% and 28-67% respectively, at all time points studied. Brain H1RO vs plasma concentrations profile showed a delay, but not when compared to brain concentrations. CONCLUSIONS AND IMPLICATIONS: This study demonstrates an effective peripheral antihistamine effect of levocetirizine without central adverse effects at the dose close to human therapeutic dose. The slow increase in H1RO in the brain with time was caused by slow blood-brain barrier transport of levocetirizine. This demonstrates the importance of measuring time course of brain H1RO in relation to brain concentrations of drugs.
  •  
7.
  •  
8.
  • Gupta, Anubha, et al. (author)
  • Quantitative determination of cetirizine enantiomers in guinea pig plasma, brain tissue and microdialysis samples using liquid chromatography/tandem mass spectrometry
  • 2005
  • In: Rapid Communications in Mass Spectrometry. - : Wiley. - 0951-4198 .- 1097-0231. ; 19:12, s. 1749-1757
  • Journal article (peer-reviewed)abstract
    • Sensitive enantioselective liquid chromatographic assays using tandem mass spectrometric detection were developed and validated for the determination of S-cetirizine (S-CZE) and R-cetirizine (R-CZE) in guinea pig plasma, brain tissue, and microdialysis samples. Enantioselective separation was achieved on an alpha1-acid glycoprotein column within 14 min for all methods. A cetirizine analog, ucb 20028, was used as internal standard. Cetirizine and the internal standard were detected by multiple reaction monitoring using transitions m/z 389.1 --> 200.9 and 396.1 --> 276.1, respectively. The samples were prepared using protein precipitation with acetonitrile. For guinea pig plasma, the assay was linear over the range 0.25-5000 ng/mL for both S-CZE and R-CZE, with a lower limit of quantification (LLOQ) of 0.25 ng/mL. For the brain tissue and microdialysis samples, the assays were linear over the range 2.5-250 ng/g and 0.25-50 ng/mL, respectively, and the LLOQ values were 2.5 ng/g and 0.25 ng/mL, respectively. The intra- and inter-day precision values were < or =7.1% and < or =12.6%, respectively, and the intra- and inter-day accuracy varied by less than +/-8.0% and +/-6.0% of the nominal value, respectively, for both enantiomers in all the matrices investigated.
  •  
9.
  • Gupta, Anubha, 1974- (author)
  • Role of the Blood-Brain Barrier in Stereoselective Distribution and Delay in H1 Receptor Occupancy of Cetirizine in the Guinea Pig Brain
  • 2006
  • Doctoral thesis (other academic/artistic)abstract
    • Cetirizine, an H1-antihistamine, is prescribed for allergic disorders. It exists as a racemic mixture, with levocetirizine being the active enantiomer. The central nervous system side-effects of H1-antihistamines are caused by their penetration into the brain. In this thesis the plasma pharmacokinetics, transport across the blood-brain barrier (BBB) and H1 receptor occupancy of cetirizine enantiomers was investigated in vivo in guinea pigs. The transport across the BBB was quantified using the microdialysis technique. Stereoselective brain distribution was investigated by measuring both unbound and total concentrations in plasma and brain. The time aspects of the H1 receptor occupancy of levocetirizine was studied in the brain and the periphery.The plasma pharmacokinetics of cetirizine was stereoselective with clearance and volume of distribution of levocetirizine being approximately half that of dextrocetirizine. This was mainly due to the differences in plasma protein binding of the enantiomers. The stereoselectivity in brain distribution indicated by the partition coefficient Kp (total AUC ratio brain to plasma) was caused by stereoselective plasma protein binding. The transport across the BBB measured in this thesis by the unbound partition coefficient Kp,uu (unbound AUC ratio brain to plasma) was the same for the two enantiomers. Binding within the brain was also not significantly different. The H1 receptor occupancy of levocetirizine in brain lagged behind the plasma concentrations whereas it was not delayed with respect to the brain concentrations. This indicates that the delayed brain H1 receptor occupancy of levocetirizine is caused by a slow transport across the BBB.In summary, the results of this thesis emphasize the importance of measuring both the unbound and total concentrations in blood and brain to characterize stereoselective brain distribution. The thesis also emphasize the importance of taking local brain pharmacokinetics into consideration in understanding pharmacokinetic-pharmacodynamic relationships of drugs with central activity.
  •  
10.
  • Gupta, Anubha, et al. (author)
  • Stereoselective pharmacokinetics of cetirizine in the guinea pig : Role of protein binding
  • 2006
  • In: Biopharmaceutics & drug disposition. - : Wiley. - 0142-2782 .- 1099-081X. ; 27:6, s. 291-297
  • Journal article (peer-reviewed)abstract
    • Purpose. To characterize the pharmacokinetics of cetirizine enantiomers in the guinea pig including protein binding in both the guinea pig and human plasma. Methods. Plasma concentrations of cetirizine enantiomers in the guinea pig were determined using a LC-MS/MS method after a short i.v. infusion (1, 2 and 4 mg/kg) of racemic cetirizine. Protein binding was determined using an in vitro equilibrium dialysis technique. A pharmacokinetic model was developed using NONMEM and the differences in pharmacokinetic parameters of levocetirizine and dextrocetirizine were estimated. Results. The plasma concentration time data of both the enantiomers were best described by a three-compartment pharmacokinetics model. The clearance (CL) of levocetirizine and dextrocetirizine was 1.2 and 2.7 ml/min, respectively, and the volume of distribution at steady state (V-ss) was 457 ml and 996 ml, respectively. The fraction unbound (f(u)) in guinea pig plasma for levocetirizine and dextrocetirizine was 7-10% and 16-21% while in human plasma, it was 8% and 12%, respectively. The factor describing the difference in the pharmacokinetic parameters of the cetirizine enantiomers was estimated to be 2.26. Conclusions. Cetirizine pharmacokinetics is stereoselective in the guinea pig. For levocetirizine, CL and V-ss were half those of dextrocetirizine, indicating that protein binding is an important factor affecting the pharmacokinetics of cetirizine. The effect of protein binding on the pharmacokinetics of the cetirizine enantiomers could be extrapolated to humans.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 15
Type of publication
journal article (11)
other publication (2)
doctoral thesis (1)
research review (1)
Type of content
peer-reviewed (12)
other academic/artistic (3)
Author/Editor
Hammarlund-Udenaes, ... (9)
Mahajan, Anubha (4)
Schwenk, Jochen M. (3)
Franks, Paul W. (3)
Laakso, Markku (3)
McCarthy, Mark I (3)
show more...
Pedersen, Oluf (3)
Hansen, Torben (3)
Mari, Andrea (3)
Vinuela, Ana (3)
Giordano, Giuseppe N ... (2)
Ridderstråle, Martin (2)
Allin, Kristine H (2)
Koivula, Robert W (2)
Bell, Jimmy D. (2)
Thomas, E. Louise (2)
Hattersley, Andrew T (2)
Tajes, Juan Fernande ... (2)
Nilsson, Peter (1)
Ohlsson, Mattias (1)
Lind, Lars (1)
Karlsson, Mats O. (1)
Melander, Olle (1)
Smith, J Gustav (1)
Dermitzakis, Emmanou ... (1)
Atabaki-Pasdar, Naei ... (1)
Dichgans, Martin (1)
Rosand, Jonathan (1)
Almgren, Peter (1)
Orho-Melander, Marju (1)
Ridker, Paul M. (1)
Chasman, Daniel I. (1)
Kurbasic, Azra (1)
Koivula, Robert (1)
Brage, Soren (1)
Paré, Guillaume (1)
Pedersen, Nancy L (1)
Hamsten, Anders (1)
Verweij, Niek (1)
Rotter, Jerome I. (1)
Rader, Daniel J. (1)
Cole, John W. (1)
Worrall, Bradford B. (1)
Nikus, Kjell (1)
Brorsson, Caroline (1)
Mazzoni, Gianluca (1)
Sharma, Sapna (1)
Haid, Mark (1)
Hong, Mun-Gwan (1)
Musholt, Petra B. (1)
show less...
University
Uppsala University (12)
Lund University (3)
Umeå University (2)
Royal Institute of Technology (2)
Karolinska Institutet (1)
Language
English (12)
Undefined language (3)
Research subject (UKÄ/SCB)
Medical and Health Sciences (11)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view