SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Gyllenhammar Marianne) "

Search: WFRF:(Gyllenhammar Marianne)

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Maric, Jelena, 1983, et al. (author)
  • Emissions of dioxins and furans during steam gasification of Automotive Shredder residue; experiences from the Chalmers 2–4-MW indirect gasifier
  • 2020
  • In: Waste Management. - : Elsevier BV. - 0956-053X .- 1879-2456. ; 102, s. 114-121
  • Journal article (peer-reviewed)abstract
    • © 2019 Emissions of dioxins and furans during the gasification of Automotive Shredder Residue (ASR) were investigated. The experimental work was carried out in a Dual Fluidized Bed (DFB) system, which consists of a 2–4-MWth gasifier that is fluidized with steam, and an interconnected fluidized bed combustor that is fluidized with air. Two different ASR fractions with higher and lower contents of plastic were tested. Measurements were carried out in the flue gas stream exiting the combustion side of the DFB, as well as in the raw gas stream exiting the gasifier side. A calcium (lime) coat was applied to the flue gas filter to ensure compliance with the emissions regulations regarding the retention of HCl and dioxins. The results showed lower emissions of polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/PCDF) in the flue gas when the raw gas derived from the ASR gasification was combusted, as compared to the direct combustion of ASR. The level of polychlorinated compounds in the flue gas before the lime-coated filter was 0.11 ng/m3N dry gas (I-TEQ) when gasification was used as a pre-step, as compared to 0.27 ng/m3N dry gas (I-TEQ) when the ASR was directly combusted. The raw gas produced by gasification contained very low levels of PCDD/PCDF, whereby the toxicity per kg of ASR was 0.17 ng/kgASR, as compared to 3.44 ng/kgASR after passage through the combustion and cooling sections and 0.34 ng/kgASR at the outlet after the lime-coated filter. A higher content of plastic in the ASR led to an increase in the levels of dioxins and furans in the raw gas, with the highest yield seen for highly chlorinated compounds, while higher temperature in the gasifier is shown to be beneficial in reducing dioxin formation.
  •  
3.
  • Maric, Jelena, 1983, et al. (author)
  • Valorization of Automobile Shredder Residue Using Indirect Gasification
  • 2018
  • In: Energy & Fuels. - : American Chemical Society (ACS). - 1520-5029 .- 0887-0624. ; 32:12, s. 12795-12804
  • Journal article (peer-reviewed)abstract
    • Dual fluidized bed (DFB) gasification offers the possibility to convert solid fuels into a valuable gas, comprised of syngas, and hydrocarbons that can be readily handled in petrochemical units. DFB gasifiers are especially suitable for nonhomogeneous fuels, such as waste fractions. In this work, the possibility to use DFB gasification as a recycling/valorization method of automobile shredder residue is investigated. The gasification tests were carried out in the Chalmers 2–4 MWth gasifier over 4 days. The effects of ash on the gas and tar compositions, as well as on the activity of the bed inventory, were evaluated. The results show that 60% of the total carbon in the fuel can be recovered in the form of a permanent gas, whereby the produced gas contains 12%mol of C2–3 hydrocarbons. The tar levels measured in the produced gas were high, although it was clear that decomposition into monomer-like compounds occurred in the reactor, which resulted in the production of valuable petrochemical compounds, corresponding to 8–9% of the carbon in the feed. Using a higher operating temperature was found to be beneficial in terms of obtaining a higher gas yield, regardless of the level of ash enrichment in the system. The high ash levels in the fuel feed did not negatively affect the technical operation of the fluidized bed. Possible routes of carbon recovery are discussed.
  •  
4.
  • Morandin, Matteo, 1981, et al. (author)
  • Thermochemical recycling of plastics for production of chemical intermediates at a Swedish chemical complex site
  • 2016
  • In: Proceedings of ECOS 2016 - 29th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems.
  • Conference paper (peer-reviewed)abstract
    • This work investigates the implementation of a waste recycling process for sustainable production of chemicals and plastics with metal recovery at a Swedish chemical complex site. Plastics waste streams and forest residues undergo thermal gasification and the produced syngas is used for the synthesis of methanol and ethanol that serve as chemical intermediates at the site thus reducing the import of fossil-based feedstock. Additionally, two metal-rich waste streams are also considered: automotive shredder residues and electronic waste. These two streams are pre-treated by pyrolysis resulting in a solid residue suitable for metal recovery. The annual potential reduction of global GHG emissions of the proposed process was quantified using a life-cycle perspective. About 120 kt of ethylene per year and about 44 kt of syngas can be produced corresponding to about 15% and 26% of the site demand, respectively. The estimated contribution to global GHG emission reduction of the proposed process concepts lies in a range between 800 and 1300 kt CO2-eq per year.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view