SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Höög Jan Olov) "

Search: WFRF:(Höög Jan Olov)

  • Result 1-9 of 9
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Staab, Claudia A, et al. (author)
  • Bioinformatics processing of protein and transcript profiles of normal and transformed cell lines indicates functional impairment of transcriptional regulators in buccal carcinoma
  • 2007
  • In: Journal of Proteome Research. - : American Chemical Society (ACS). - 1535-3893 .- 1535-3907. ; 6:9, s. 3705-3717
  • Journal article (peer-reviewed)abstract
    • Normal and two transformed buccal keratinocyte lines were cultured under a standardized condition to explore mechanisms of carcinogenesis and tumor marker expression at transcript and protein levels. An approach combining three bioinformatic programs allowed coupling of abundant proteins and large-scale transcript data to low-abundance transcriptional regulators. The analysis identified previously proposed and suggested novel protein biomarkers, gene ontology categories, molecular networks, and functionally impaired key regulator genes for buccal/oral carcinoma. © 2007 American Chemical Society.
  •  
2.
  • Hellgren, Mikko, 1972-, et al. (author)
  • A hydrogen-bonding network in mammalian sorbitol dehydrogenase stabilizes the tetrameric state and is essential for the catalytic power
  • 2007
  • In: Cellular and Molecular Life Sciences (CMLS). - : Springer. - 1420-682X .- 1420-9071. ; 64:23, s. 3129-3138
  • Journal article (peer-reviewed)abstract
    • Subunit interaction in sorbitol dehydrogenase (SDH) has been studied with in vitro and in silico methods identifying a vital hydrogen-bonding network, which is strictly conserved among mammalian SDH proteins. Mutation of one of the residues in the hydrogen-bonding network, Tyr110Phe, abolished the enzymatic activity and destabilized the protein into tetramers, dimers and monomers as judged from gel filtration experiments at different temperatures compared to only tetramers for the wild-type protein below 307 K. The determined equilibrium constants revealed a large difference in Gibbs energy (8 kJ/mol) for the tetramer stability between wild-type SDH and the mutated form Tyr110Phe SDH. The results focus on a network of coupled hydrogen bonds in wild-type SDH that uphold the protein interface, which is specific and favorable to electrostatic, van der Waals and hydrogen-bond interactions between subunits, interactions that are crucial for the catalytic power of SDH. 
  •  
3.
  • Hellgren, Mikko, 1972-, et al. (author)
  • Alcohol dehydrogenase 2 is a major hepatic enzyme for human retinol metabolism
  • 2007
  • In: Cellular and Molecular Life Sciences (CMLS). - : Springer. - 1420-682X .- 1420-9071. ; 64:4, s. 498-505
  • Journal article (peer-reviewed)abstract
    • The metabolism of all-trans- and 9-cis-retinol/ retinaldehyde has been investigated with focus on the activities of human, mouse and rat alcohol dehydrogenase 2 (ADH2), an intriguing enzyme with apparently different functions in human and rodents. Kinetic constants were determined with an HPLC method and a structural approach was implemented by in silico substrate dockings. For human ADH2, the determined K(m) values ranged from 0.05 to 0.3 microM and k(cat) values from 2.3 to 17.6 min(-1), while the catalytic efficiency for 9-cis-retinol showed the highest value for any substrate. In contrast, poor activities were detected for the rodent enzymes. A mouse ADH2 mutant (ADH2Pro47His) was studied that resembles the human ADH2 setup. This mutation increased the retinoid activity up to 100-fold. The K(m) values of human ADH2 are the lowest among all known human retinol dehydrogenases, which clearly support a role in hepatic retinol oxidation at physiological concentrations. 
  •  
4.
  • Hellgren, Mikko, 1972-, et al. (author)
  • Multi-level modelling of the parallell metabolism of ethanol and retinol, with implications for foetal alcohol syndrome
  • 2008
  • In: The 9th International Conference on Systems Biology (ICSB-2008) in Gothenburg (Sweden). - 9781615673322
  • Conference paper (peer-reviewed)abstract
    • Objective: Models of the human metabolism are important for understanding diseases and could serve as a powerful tool in the drug discovery process. The complexity of even a unicellular organism is tremendous and most researchers have therefore limited their modelling efforts to bacteria, or single intracellular pathways. We studied the parallel metabolism of ethanol and retinol in humans, because of its suggested physiological importance for the development of foetal alcohol syndrome. Large ethanol intake will inhibit the conversion of retinol into retinoic acid, which is a crucial transcription factor during embryonic development. In this study the objective was to construct a quantitative model that connects phenotype observations at a population, organic and intracellular level with differences in genotype and ethanol metabolism, for further prediction of the influence on the foetus. Results: We constructed a multiple compartments model, which included a detailed desccription of the ethanol and retinol metabolism in hepatic cells for different genotypes. The model has been validated using published time-series measurements of ethanol, acetaldehyde and acetate concentrations in the blood. This model correctly accounts for differences in geno- and phenotype observed within the human population. Furthermore, the model shows that the retinol metabolism is decreased by ethanol ingestion, both via a reduced intracellular NAD+ concentration, and by an inhibition of alcohol and aldehyde dehydrogenases. Conclusions: We considered the problem of multi-level modelling with a human model for the ethanol and retinol metabolism in different compartments. This links intracellular mechanisms to macroscopic observations. The model explained the connection between geno- and phenotype differences observed at a population level. This model also shows a plausible relationship between ethanol and retinol metabolism for e.g. foetal alcohol syndrome.
  •  
5.
  • Hellgren, Mikko, et al. (author)
  • Virtual screening for ligands to human alcohol dehydrogenase 3
  • Other publication (other academic/artistic)abstract
    • Alcohol dehydrogenase 3 (ADH3) has been suggested a role in nitric oxide homeostasis due to its function as a S-nitrosoglutathione (GSNO) reductase. This has requested a modulator of the ADH3 activity for control of GSNO levels. Today virtual screenings are frequently used in drug discovery to dock and rank a large number of compounds. With molecular dockings of more than 40,000 compounds into the active site pocket of human ADH3 we ranked compounds with a novel method. Six top ranked compounds that were not known to interact with ADH3 were tested in vitro, where two showed substrate activity (9-decen-1-ol and dodecyltetraglycol), two showed inhibition capacity (deoxycholic acid and doxorubicin) and two did not have any detectable effect. For the substrates, site specific interactions and calculated binding scoring energies were determined with an extended docking simulation including flexible side chains of amino acids residues. The binding scoring energies correlated well with the logarithm of the substrates kcat over Km values. Furthermore, with these computational and experimental data three different lines for specific inhibitors for ADH3 are suggested: fatty acids, glutathione analogs and in addition deoxycholic acids.
  •  
6.
  • Staab, Claudia A., et al. (author)
  • Medium- and short-chain dehydrogenase/reductase gene and protein families : Dual functions of alcohol dehydrogenase 3: implications with focus on formaldehyde dehydrogenese and S-nitrosoglutathione reductase activities
  • 2008
  • In: Cellular and Molecular Life Sciences (CMLS). - : Springer. - 1420-682X .- 1420-9071. ; 65:24, s. 3950-3960
  • Research review (peer-reviewed)abstract
    • Alcohol dehydrogenase 3 (ADH3) has emerged as an important regulator of protein S-nitrosation in its function as S-nitrosoglutathione (GSNO) reductase. GSNO depletion is associated with various disease conditions, emphasizing the potential value of a specific ADH3 inhibitor. The present study investigated inhibition of ADH3-mediated GSNO reduction by various substrate analogues, including medium-chain fatty acids and glutathione derivatives. The observed inhibition type was non-competitive. Similar to the Michaelis constants for the corresponding ω-hydroxy fatty acids, the inhibition constants for fatty acids were in the micromolar range and showed a clear dependency on chain length with optimal inhibitory capacity for eleven and twelve carbons. The most efficient inhibitors found were undecanoic acid, dodecanoic acid and dodecanedioic acid, with no significant difference in inhibition constant. All glutathione-derived inhibitors displayed inhibition constants in the millimolar range, at least three orders of magnitudes higher than the Michaelis constants of the high-affinity substrates GSNO and S-hydroxymethylglutathione. The experimental results as well as docking simulations with GSNO and S-methylglutathione suggest that for ADH3 ligands with a glutathione scaffold, in contrast to fatty acids, a zinc-binding moiety is imperative for correct orientation and stabilization of the hydrophilic glutathione scaffold within a predominantly hydrophobic active site.
  •  
7.
  • Staab, Claudia A., et al. (author)
  • Medium-chain fatty acids and glutathione derivatives as inhibitors of S-nitrosoglutathione reduction mediated by alcohol dehydrogenase 3
  • 2009
  • In: Chemico-Biological Interactions. - : Elsevier. - 0009-2797 .- 1872-7786. ; 180:1, s. 113-118
  • Journal article (peer-reviewed)abstract
    • Alcohol dehydrogenase 3 (ADH3) has emerged as an important regulator of protein S-nitrosation in its function as S-nitrosoglutathione (GSNO) reductase. GSNO depletion is associated with various disease conditions, emphasizing the potential value of a specific ADH3 inhibitor. The present study investigated inhibition of ADH3-mediated GSNO reduction by various substrate analogues, including medium-chain fatty acids and glutathione derivatives. The observed inhibition type was non-competitive. Similar to the Michaelis constants for the corresponding omega-hydroxy fatty acids, the inhibition constants for fatty acids were in the micromolar range and showed a clear dependency on chain length with optimal inhibitory capacity for eleven and twelve carbons. The most efficient inhibitors found were undecanoic acid, dodecanoic acid and dodecanedioic acid, with no significant difference in inhibition constant. All glutathione-derived inhibitors displayed inhibition constants in the millimolar range, at least three orders of magnitudes higher than the Michaelis constants of the high-affinity substrates GSNO and S-hydroxymethylglutathione. The experimental results as well as docking simulations with GSNO and S-methylglutathione suggest that for ADH3 ligands with a glutathione scaffold, in contrast to fatty acids, a zinc-binding moiety is imperative for correct orientation and stabilization of the hydrophilic glutathione scaffold within a predominantly hydrophobic active site. 
  •  
8.
  • Östberg, Linus J., et al. (author)
  • Computational analysis of human medium-chain dehydrogenases/ reductases revealing substrate- and coenzyme-binding characteristics
  • 2024
  • In: Chemico-Biological Interactions. - : Elsevier. - 0009-2797 .- 1872-7786. ; 390
  • Journal article (peer-reviewed)abstract
    • The medium-chain dehydrogenase/reductase (MDR) superfamily has more than 600,000 members in UniProt as of March 2023. As the family has been growing, the proportion of functionally characterized proteins has been falling behind. The aim of this project was to investigate the binding pockets of nine different MDR protein families based on sequence conservation patterns and three-dimensional structures of members within the respective families. A search and analysis methodology was developed. Using this, a total of 2000 eukaryotic MDR sequences belonging to nine different families were identified. The pairwise sequence identities within each of the families were 80-90 % for the mammalian sequences, like the levels observed for alcohol dehydrogenase, another MDR family. Twenty conserved residues were identified in the coenzyme part of the binding site by matching structural and conservation data of all nine protein families. The conserved residues in the substrate part of the binding pocket varied between the nine MDR families, implying divergent functions for the different families. Studying each family separately made it possible to identify multiple conserved residues that are expected to be important for substrate binding or catalysis of the enzymatic reaction. By combining structural data with the conservation of the amino acid residues in each protein, important residues in the binding pocket were identified for each of the nine MDRs. The obtained results add new positions of interest for the binding and activity of the enzyme family as well as fit well to earlier published data. Three distinct types of binding pockets were identified, containing no, one, or two tyrosine residues.
  •  
9.
  • Östberg, Linus J., et al. (author)
  • Computational studies of human class V alcohol dehydrogenase - the odd sibling
  • 2016
  • In: BMC Biochemistry. - : Springer Science and Business Media LLC. - 1471-2091. ; 17
  • Journal article (peer-reviewed)abstract
    • Background: All known attempts to isolate and characterize mammalian class V alcohol dehydrogenase (class V ADH), a member of the large ADH protein family, at the protein level have failed. This indicates that the class V ADH protein is not stable in a non-cellular environment, which is in contrast to all other human ADH enzymes. In this report we present evidence, supported with results from computational analyses performed in combination with earlier in vitro studies, why this ADH behaves in an atypical way. Results: Using a combination of structural calculations and sequence analyses, we were able to identify local structural differences between human class V ADH and other human ADHs, including an elongated beta-strands and a labile a-helix at the subunit interface region of each chain that probably disturb it. Several amino acid residues are strictly conserved in class I-IV, but altered in class V ADH. This includes a for class V ADH unique and conserved Lys51, a position directly involved in the catalytic mechanism in other ADHs, and nine other class V ADH-specific residues. Conclusions: In this study we show that there are pronounced structural changes in class V ADH as compared to other ADH enzymes. Furthermore, there is an evolutionary pressure among the mammalian class V ADHs, which for most proteins indicate that they fulfill a physiological function. We assume that class V ADH is expressed, but unable to form active dimers in a non-cellular environment, and is an atypical mammalian ADH. This is compatible with previous experimental characterization and present structural modelling. It can be considered the odd sibling of the ADH protein family and so far seems to be a pseudoenzyme with another hitherto unknown physiological function.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-9 of 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view