SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Hageman Steven H. J.) "

Search: WFRF:(Hageman Steven H. J.)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Hageman, Steven H. J., et al. (author)
  • Prediction of individual lifetime cardiovascular risk and potential treatment benefit: development and recalibration of the LIFE-CVD2 model to four European risk regions
  • 2024
  • In: EUROPEAN JOURNAL OF PREVENTIVE CARDIOLOGY. - 2047-4873 .- 2047-4881.
  • Journal article (peer-reviewed)abstract
    • Aims The 2021 European Society of Cardiology prevention guidelines recommend the use of (lifetime) risk prediction models to aid decisions regarding initiation of prevention. We aimed to update and systematically recalibrate the LIFEtime-perspective CardioVascular Disease (LIFE-CVD) model to four European risk regions for the estimation of lifetime CVD risk for apparently healthy individuals.Methods and results The updated LIFE-CVD (i.e. LIFE-CVD2) models were derived using individual participant data from 44 cohorts in 13 countries (687 135 individuals without established CVD, 30 939 CVD events in median 10.7 years of follow-up). LIFE-CVD2 uses sex-specific functions to estimate the lifetime risk of fatal and non-fatal CVD events with adjustment for the competing risk of non-CVD death and is systematically recalibrated to four distinct European risk regions. The updated models showed good discrimination in external validation among 1 657 707 individuals (61 311 CVD events) from eight additional European cohorts in seven countries, with a pooled C-index of 0.795 (95% confidence interval 0.767-0.822). Predicted and observed CVD event risks were well calibrated in population-wide electronic health records data in the UK (Clinical Practice Research Datalink) and the Netherlands (Extramural LUMC Academic Network). When using LIFE-CVD2 to estimate potential gain in CVD-free life expectancy from preventive therapy, projections varied by risk region reflecting important regional differences in absolute lifetime risk. For example, a 50-year-old smoking woman with a systolic blood pressure (SBP) of 140 mmHg was estimated to gain 0.9 years in the low-risk region vs. 1.6 years in the very high-risk region from lifelong 10 mmHg SBP reduction. The benefit of smoking cessation for this individual ranged from 3.6 years in the low-risk region to 4.8 years in the very high-risk region.Conclusion By taking into account geographical differences in CVD incidence using contemporary representative data sources, the recalibrated LIFE-CVD2 model provides a more accurate tool for the prediction of lifetime risk and CVD-free life expectancy for individuals without previous CVD, facilitating shared decision-making for cardiovascular prevention as recommended by 2021 European guidelines. The study introduces LIFE-CVD2, a new tool that helps predict the risk of heart disease over a person's lifetime, and highlights how where you live in Europe can affect this risk. Using health information from over 687 000 people, LIFE-CVD2 looks at things like blood pressure and whether someone smokes to figure out their chance of having heart problems later in life. Health information from another 1.6 million people in seven different European countries was used to show that it did a good job of predicting who might develop heart disease.Knowing your heart disease risk over your whole life helps doctors give you the best advice to keep your heart healthy. Let us say there is a 50-year-old woman who smokes and has a bit high blood pressure. Right now, she might not look like she is in danger. But with the LIFE-CVD2 tool, doctors can show her how making changes today, like lowering her blood pressure or stopping smoking, could mean many more years without heart problems. These healthy changes can make a big difference over many years.
  •  
2.
  • Gielen, Marij, et al. (author)
  • Body mass index is negatively associated with telomere length : A collaborative cross-sectional meta-analysis of 87 observational studies
  • 2018
  • In: American Journal of Clinical Nutrition. - : Elsevier BV. - 0002-9165. ; 108:3, s. 453-475
  • Journal article (peer-reviewed)abstract
    • Background: Even before the onset of age-related diseases, obesity might be a contributing factor to the cumulative burden of oxidative stress and chronic inflammation throughout the life course. Obesity may therefore contribute to accelerated shortening of telomeres. Consequently, obese persons are more likely to have shorter telomeres, but the association between body mass index (BMI) and leukocyte telomere length (TL) might differ across the life span and between ethnicities and sexes. Objective: A collaborative cross-sectionalmeta-analysis of observational studies was conducted to investigate the associations between BMI and TL across the life span. Design: Eighty-seven distinct study samples were included in the meta-analysis capturing data from 146,114 individuals. Studyspecific age- and sex-adjusted regression coefficients were combined by using a random-effects model in which absolute [base pairs (bp)] and relative telomere to single-copy gene ratio (T/S ratio) TLs were regressed against BMI. Stratified analysis was performed by 3 age categories ("young": 18-60 y; "middle": 61-75 y; and "old": >75 y), sex, and ethnicity. Results: Each unit increase in BMI corresponded to a-3.99 bp (95% CI: -5.17, -2.81 bp) difference in TL in the total pooled sample; among young adults, each unit increase in BMI corresponded to a -7.67 bp (95% CI:-10.03,-5.31 bp) difference. Each unit increase in BMI corresponded to a -1.58 × 10-3 unit T/S ratio (0.16% decrease; 95% CI: -2.14 × 10-3, -1.01 × 10-3) difference in ageand sex-adjusted relative TL in the total pooled sample; among young adults, each unit increase in BMI corresponded to a -2.58 × 10-3 unit T/S ratio (0.26% decrease; 95% CI: -3.92 × 10-3, -1.25 × 10-3). The associations were predominantly for the white pooled population. No sex differences were observed. Conclusions: A higher BMI is associated with shorter telomeres, especially in younger individuals. The presently observed difference is not negligible. Meta-analyses of longitudinal studies evaluating change in body weight alongside change in TL arewarranted.
  •  
3.
  • Hageman, Steven H. J., et al. (author)
  • Estimation of recurrent atherosclerotic cardiovascular event risk in patients with established cardiovascular disease : the updated SMART2 algorithm
  • 2022
  • In: European Heart Journal. - : Oxford University Press. - 0195-668X .- 1522-9645. ; 43:18, s. 1715-1727
  • Journal article (peer-reviewed)abstract
    • Aims The 10-year risk of recurrent atherosclerotic cardiovascular disease (ASCVD) events in patients with established ASCVD can be estimated with the Secondary Manifestations of ARTerial disease (SMART) risk score, and may help refine clinical management. To broaden generalizability across regions, we updated the existing tool (SMART2 risk score) and recalibrated it with regional incidence rates and assessed its performance in external populations.Methods and results Individuals with coronary artery disease, cerebrovascular disease, peripheral artery disease, or abdominal aortic aneurysms were included from the Utrecht Cardiovascular Cohort-SMART cohort [n = 8355; 1706 ASCVD events during a median follow-up of 8.2 years (interquartile range 4.2-12.5)] to derive a 10-year risk prediction model for recurrent ASCVD events (non-fatal myocardial infarction, non-fatal stroke, or cardiovascular mortality) using a Fine and Gray competing risk-adjusted model. The model was recalibrated to four regions across Europe, and to Asia (excluding Japan), Japan, Australia, North America, and Latin America using contemporary cohort data from each target region. External validation used data from seven cohorts [Clinical Practice Research Datalink, SWEDEHEART, the international REduction of Atherothrombosis for Continued Health (REACH) Registry, Estonian Biobank, Spanish Biomarkers in Acute Coronary Syndrome and Biomarkers in Acute Myocardial Infarction (BACS/BAMI), the Norwegian COgnitive Impairment After STroke, and Bialystok PLUS/Polaspire] and included 369 044 individuals with established ASCVD of whom 62 807 experienced an ASCVD event. C-statistics ranged from 0.605 [95% confidence interval (CI) 0.547-0.664] in BACS/BAMI to 0.772 (95% CI 0.659-0.886) in REACH Europe high-risk region. The clinical utility of the model was demonstrated across a range of clinically relevant treatment thresholds for intensified treatment options.Conclusion The SMART2 risk score provides an updated, validated tool for the prediction of recurrent ASCVD events in patients with established ASCVD across European and non-European populations. The use of this tool could allow for a more personalized approach to secondary prevention based upon quantitative rather than qualitative estimates of residual risk.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view