SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Haglund Lisbet) "

Sökning: WFRF:(Haglund Lisbet)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Akhatib, Bashar, et al. (författare)
  • Chondroadherin Fragmentation Mediated by the Protease HTRA1 Distinguishes Human Intervertebral Disc Degeneration from Normal Aging
  • 2013
  • Ingår i: Journal of Biological Chemistry. - 1083-351X. ; 288:26, s. 19280-19287
  • Tidskriftsartikel (refereegranskat)abstract
    • Chondroadherin, a member of the leucine-rich repeat family, has previously been demonstrated to be fragmented in some juveniles with idiopathic scoliosis. This observation led us to investigate adults with disc degeneration. Immunoblotting analysis demonstrated that non-degenerate discs from three different age groups show no chondroadherin fragmentation. Furthermore, the chondroadherin fragments in adult degenerate disc and the juvenile scoliotic disc were compared via immunoblot analysis and appeared to have a similar size. We then investigated whether or not chondroadherin fragmentation increases with the severity of disc degeneration. Three different samples with different severities were chosen from the same disc, and chondroadherin fragmentation was found to be more abundant with increasing severity of degeneration. This observation led us to the creation of a neoepitope antibody to the cleavage site observed. We then observed that the cleavage site in adult degenerate discs and juvenile scoliotic discs was identical as confirmed by the neoepitope antibody. Consequently, investigation of the protease capable of cleaving chondroadherin at this site was necessary. In vitro digests of disc tissue demonstrated that ADAMTS-4 and -5; cathepsins K, B, and L; and MMP-3, -7, -12, and -13 were incapable of cleavage of chondroadherin at this site and that HTRA1 was indeed the only protease capable. Furthermore, increased protein levels of the processed form of HTRA1 were demonstrated in degenerate disc tissues via immunoblotting. The results suggest that chondroadherin fragmentation can be used as a biomarker to distinguish the processes of disc degeneration from normal aging.
  •  
2.
  • Gawri, Rahul, et al. (författare)
  • Link N is Cleaved by Human Annulus Fibrosus Cells Generating a Fragment With Retained Biological Activity
  • 2014
  • Ingår i: Journal of Orthopaedic Research. - : Wiley. - 1554-527X .- 0736-0266. ; 32:9, s. 1189-1197
  • Tidskriftsartikel (refereegranskat)abstract
    • Presently, there are no established treatments to prevent, stop or even retard back pain arising from disc degeneration. Previous studies have shown that Link N can act as a growth factor and stimulate the synthesis of proteoglycans and collagens, in IVD. However, the sequences in Link N involved in modulating cellular activity are not well understood. To determine if disc cells can proteolytically process Link N, human disc cells were exposed to native Link N over a 48 h period and mass spectrometric analysis revealed that a peptide spanning residues 1-8 was generated in the presence of AF cells but not NP cells. Link N 1-8 significantly induced proteoglycan production in the presence of IL-1 beta NP and AF cells, confirming that the biological effect is maintained in the first 8 amino acids of the peptide and indicating that the effect is sustained in an inflammatory environment. Thus Link-N 1-8 could be a promising candidate for biologically induced disc repair, and the identification of such a stable specific peptide may facilitate the design of compounds to promote disc repair and provide alternatives to surgical intervention for early stage disc degeneration. (C) 2014 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
  •  
3.
  • Goebel, Andreas, et al. (författare)
  • Passive transfer of fibromyalgia symptoms from patients to mice
  • 2021
  • Ingår i: Journal of Clinical Investigation. - : American Society For Clinical Investigation. - 0021-9738 .- 1558-8238. ; 131:13
  • Tidskriftsartikel (refereegranskat)abstract
    • Fibromyalgia syndrome (FMS) is characterized by widespread pain and tenderness, and patients typically experience fatigue and emotional distress. The etiology and pathophysiology of fibromyalgia are not fully explained and there are no effective drug treatments. Here we show that IgG from FMS patients produced sensory hypersensitivity by sensitizing nociceptive neurons. Mice treated with IgG from FMS patients displayed increased sensitivity to noxious mechanical and cold stimulation, and nociceptive fibers in skin-nerve preparations from mice treated with FMS IgG displayed an increased responsiveness to cold and mechanical stimulation. These mice also displayed reduced locomotor activity, reduced paw grip strength, and a loss of intraepidermal innervation. In contrast, transfer of IgG-depleted serum from FMS patients or IgG from healthy control subjects had no effect. Patient IgG did not activate naive sensory neurons directly. IgG from FMS patients labeled satellite glial cells and neurons in vivo and in vitro, as well as myelinated fiber tracts and a small number of macrophages and endothelial cells in mouse dorsal root ganglia (DRG), but no cells in the spinal cord. Furthermore, FMS IgG bound to human DRG. Our results demonstrate that IgG from FMS patients produces painful sensory hypersensitivities by sensitizing peripheral nociceptive afferents and suggest that therapies reducing patient IgG titers may be effective for fibromyalgia.
  •  
4.
  • Haglund, Lisbet, et al. (författare)
  • Identification and Characterization of the Integrin alpha(2)beta(1) Binding Motif in Chondroadherin Mediating Cell Attachment
  • 2011
  • Ingår i: Journal of Biological Chemistry. - 1083-351X. ; 286:5, s. 3925-3934
  • Tidskriftsartikel (refereegranskat)abstract
    • Chondroadherin is a leucine-rich repeat protein known to mediate adhesion of isolated cells via the integrin alpha(2)beta(1) and to interact with collagen. In this work, we show that cell adhesion to chondroadherin leads to activation of MAPKs but does not result in cell spreading and division. This is in contrast to the spreading and dividing of cells grown on collagen, although the binding is mediated via the same alpha(2)beta(1) receptor. We identified a cell binding motif, CQLRGLRRWLEAK(318) by mass spectrometry after protease digestion of chondroadherin. Cells adhering to the synthetic peptide CQLRGLRRWLEAK(318) remained round, as was observed when they bound to the intact protein. The peptide added in solution was able to inhibit cell adhesion to the intact protein in a dose-dependent manner and was also verified to bind to the alpha(2)beta(1) integrin. A cyclic peptide, CQLRGLRRWLEAKASRPDATC(326), mimicking the structural constraints of this sequence in the intact protein, showed similar efficiency in inhibiting binding to chondroadherin. The unique peptide motif responsible for cellular binding is primarily located in the octamer sequence LRRWLEAK(318). Binding of cells to the active peptide or to chondroadherin immobilized on cell culture plates rapidly induces intracellular signaling (i.e. ERK phosphorylation). Thus, chondroadherin interaction with cells may be central for maintaining the adult chondrocyte phenotype and cartilage homeostasis. The peptides, particularly the more stable cyclic peptide, open new opportunities to modulate cell behavior in situations of tissue pathology.
  •  
5.
  • Haglund, Lisbet, et al. (författare)
  • The C-terminal Peptide of Chondroadherin Modulates Cellular Activity by Selectively Binding to Heparan Sulfate Chains
  • 2013
  • Ingår i: Journal of Biological Chemistry. - 1083-351X. ; 288:2, s. 995-1008
  • Tidskriftsartikel (refereegranskat)abstract
    • Chondroadherin, a leucine-rich repeat family member, contains a very C-terminal sequence CKFPTKRSKKAGRH(359), now shown to bind to heparin with a K-D of 13 mu M. This observation led us to investigate whether chondroadherin interacts via this C-terminal heparin-binding domain with glycosaminoglycan chains of proteoglycans at the cell surface. Cells were shown to bind this heparin-binding peptide in FACS analysis, and the interaction was shown to be with glycosaminoglycans because it was abolished when sulfation was inhibited by chlorate treatment of the cells. In separate experiments, heparin and heparan sulfate inhibited the peptide interaction in a dose-dependent manner. Using a human chondrosarcoma and a murine osteoblast cell line, heparan sulfate proteoglycans were identified as the cell surface receptors involved in the binding. Different binding syndecans were identified in the two different cell lines, indicating that the same protein core of a proteoglycan may have structural and functional differences in the attached heparan sulfate chains. Upon binding to coated peptide, cells spread, demonstrating engagement of the cytoskeleton, but no focal adhesion complex was formed. The number of cells adhering via their beta(1) integrin receptor to collagen type II or chondroadherin was profoundly and rapidly enhanced by the addition of the heparin-binding peptide. The peptide added to the cells caused ERK phosphorylation, showing that it triggered intracellular signaling. The results show that heparan sulfate chains differ between various members of the proteoglycan families on a given cell, but also differ between the same proteoglycan on different cells with a potential for differential regulation of cellular activities.
  •  
6.
  • Krock, Emerson, et al. (författare)
  • Fibromyalgia patients with elevated levels of anti-satellite glia cell immunoglobulin G antibodies present with more severe symptoms
  • 2023
  • Ingår i: Pain. - : Ovid Technologies (Wolters Kluwer Health). - 0304-3959 .- 1872-6623. ; 164:8, s. 1828-1840
  • Tidskriftsartikel (refereegranskat)abstract
    • Transferring fibromyalgia patient immunoglobulin G (IgG) to mice induces pain-like behaviour, and fibromyalgia IgG binds mouse and human satellite glia cells (SGCs). These findings suggest that autoantibodies could be part of fibromyalgia pathology. However, it is unknown how frequently fibromyalgia patients have anti-SGC antibodies and how anti-SGC antibodies associate with disease severity. Here, we quantified serum or plasma anti-SGC IgG levels in 2 fibromyalgia cohorts from Sweden and Canada using an indirect immunofluorescence murine cell culture assay. Fibromyalgia serum IgG binding to human SGCs in human dorsal root ganglia tissue sections was also assessed by immunofluorescence. In the cell culture assay, anti-SGC IgG levels were increased in both fibromyalgia cohorts compared with control group. Elevated anti-SGC IgG was associated with higher levels of self-reported pain in both cohorts, and higher fibromyalgia impact questionnaire scores and increased pressure sensitivity in the Swedish cohort. Anti-SGC IgG levels were not associated with fibromyalgia duration. Swedish fibromyalgia (FM) patients were clustered into FM-severe and FM-mild groups, and the FM-severe group had elevated anti-SGC IgG compared with the FM-mild group and control group. Anti-SGC IgG levels detected in culture positively correlated with increased binding to human SGCs. Moreover, the FM-severe group had elevated IgG binding to human SGCs compared with the FM-mild and control groups. These results demonstrate that a subset of fibromyalgia patients have elevated levels of anti-SGC antibodies, and the antibodies are associated with more severe fibromyalgia symptoms. Screening fibromyalgia patients for anti-SGC antibodies could provide a path to personalized treatment options that target autoantibodies and autoantibody production.
  •  
7.
  • Lund, Harald, et al. (författare)
  • CD163+ macrophages monitor enhanced permeability at the blood-dorsal root ganglion barrier
  • 2024
  • Ingår i: Journal of Experimental Medicine. - : Rockefeller University Press. - 0022-1007 .- 1540-9538. ; 221:2
  • Tidskriftsartikel (refereegranskat)abstract
    • In dorsal root ganglia (DRG), macrophages reside close to sensory neurons and have largely been explored in the context of pain, nerve injury, and repair. However, we discovered that most DRG macrophages interact with and monitor the vasculature by sampling macromolecules from the blood. Characterization of the DRG vasculature revealed a specialized endothelial bed that transformed in molecular, structural, and permeability properties along the arteriovenous axis and was covered by macrophage-interacting pericytes and fibroblasts. Macrophage phagocytosis spatially aligned with peak endothelial permeability, a process regulated by enhanced caveolar transcytosis in endothelial cells. Profiling the DRG immune landscape revealed two subsets of perivascular macrophages with distinct transcriptome, turnover, and function. CD163(+) macrophages self-maintained locally, specifically participated in vasculature monitoring, displayed distinct responses during peripheral inflammation, and were conserved in mouse and man. Our work provides a molecular explanation for the permeability of the blood-DRG barrier and identifies an unappreciated role of macrophages as integral components of the DRG-neurovascular unit.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy