SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hajra R. N.) "

Sökning: WFRF:(Hajra R. N.)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Haribabu, S., et al. (författare)
  • Effect of Al Addition on the Microstructure and Phase Stability of P91 Ferritic-Martensitic Steel
  • 2019
  • Ingår i: Metallurgical and Materials Transactions. A. - : Springer Science and Business Media LLC. - 1073-5623 .- 1543-1940. ; 50:3, s. 1421-1436
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper presents the results of an experimental and computational study carried out to elucidate the effect of Al on the microstructure and phase stability of P91 F/M steel in as-cast, homogenized and normalized conditions. Al-added steels followed ‘Ferritic-Austenitic’ mode of solidification and the as-cast microstructures consisted of δ-ferrite + α′-martensite, the volume fraction of ferrite and hardness of martensite increased with Al concentration. Heat treatments and DSC experiments confirmed increased stability for δ-ferrite with Al addition. Systematic change in the phase transformations temperatures and volume fraction of equilibrium phases due to Al addition was estimated with the help of Thermo-Calc®. Al addition promoted the formation of AlN which was confirmed through electron microscopy-based investigations. AlN dissolution temperature was always above γ-loop which made it impossible to dissolve during austenization. With the help of Scheil and equilibrium simulations using Thermo-Calc®, elemental partitioning between δ-ferrite and α′ phases was found to be the reason for higher hardness of martensite. Based on experimental evidences, it is concluded that except in the case of 0.48 wt pct Al-added steel it is impossible to obtain single phase γ-field (without ferrite) at high temperature thereby a fully martensite structure on cooling.
  •  
2.
  • Goetz, C., et al. (författare)
  • Cometary plasma science : Open science questions for future space missions
  • 2021
  • Ingår i: Experimental astronomy. - : Springer Nature. - 0922-6435 .- 1572-9508.
  • Tidskriftsartikel (refereegranskat)abstract
    • Comets hold the key to the understanding of our Solar System, its formation and its evolution, and to the fundamental plasma processes at work both in it and beyond it. A comet nucleus emits gas as it is heated by the sunlight. The gas forms the coma, where it is ionised, becomes a plasma, and eventually interacts with the solar wind. Besides these neutral and ionised gases, the coma also contains dust grains, released from the comet nucleus. As a cometary atmosphere develops when the comet travels through the Solar System, large-scale structures, such as the plasma boundaries, develop and disappear, while at planets such large-scale structures are only accessible in their fully grown, quasi-steady state. In situ measurements at comets enable us to learn both how such large-scale structures are formed or reformed and how small-scale processes in the plasma affect the formation and properties of these large scale structures. Furthermore, a comet goes through a wide range of parameter regimes during its life cycle, where either collisional processes, involving neutrals and charged particles, or collisionless processes are at play, and might even compete in complicated transitional regimes. Thus a comet presents a unique opportunity to study this parameter space, from an asteroid-like to a Mars- and Venus-like interaction. The Rosetta mission and previous fast flybys of comets have together made many new discoveries, but the most important breakthroughs in the understanding of cometary plasmas are yet to come. The Comet Interceptor mission will provide a sample of multi-point measurements at a comet, setting the stage for a multi-spacecraft mission to accompany a comet on its journey through the Solar System. This White Paper, submitted in response to the European Space Agency’s Voyage 2050 call, reviews the present-day knowledge of cometary plasmas, discusses the many questions that remain unanswered, and outlines a multi-spacecraft European Space Agency mission to accompany a comet that will answer these questions by combining both multi-spacecraft observations and a rendezvous mission, and at the same time advance our understanding of fundamental plasma physics and its role in planetary systems.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy