SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Halayko Andrew J.) "

Search: WFRF:(Halayko Andrew J.)

  • Result 1-10 of 10
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Klionsky, Daniel J., et al. (author)
  • Guidelines for the use and interpretation of assays for monitoring autophagy
  • 2012
  • In: Autophagy. - : Informa UK Limited. - 1554-8635 .- 1554-8627. ; 8:4, s. 445-544
  • Research review (peer-reviewed)abstract
    • In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.
  •  
3.
  • Ghavami, Saeid, et al. (author)
  • Autophagy regulates trans fatty acid-mediated apoptosis in primary cardiac myofibroblasts.
  • 2012
  • In: Biochimica et Biophysica Acta. Molecular Cell Research. - : Elsevier BV. - 0167-4889 .- 1879-2596. ; 1823:12, s. 2274-2286
  • Journal article (peer-reviewed)abstract
    • Trans fats are not a homogeneous group of molecules and less is known about the cellular effects of individual members of the group. Vaccenic acid (VA) and elaidic acid (EA) are the predominant trans monoenes in ruminant fats and vegetable oil, respectively. Here, we investigated the mechanism of cell death induced by VA and EA on primary rat ventricular myofibroblasts (rVF). The MTT assay demonstrated that both VA and EA (200μM, 0-72h) reduced cell viability in rVF (P<0.001). The FACS assay confirmed that both VA and EA induced apoptosis in rVF, and this was concomitant with elevation in cleaved caspase-9, -3 and -7, but not caspase-8. VA and EA decreased the expression ratio of Bcl2:Bax, induced Bax translocation to mitochondria and decrease in mitochondrial membrane potential (Δψ). BAX and BAX/BAK silencing in mouse embryonic fibroblasts (MEF) inhibited VA and EA-induced cell death compared to the corresponding wild type cells. Transmission electron microscopy revealed that VA and EA also induced macroautophagosome formation in rVF, and immunoblot analysis confirmed the induction of several autophagy markers: LC3-β lipidation, Atg5-12 accumulation, and increased beclin-1. Finally, deletion of autophagy genes, ATG3 and ATG5 significantly inhibited VA and EA-induced cell death (P<0.001). Our findings show for the first time that trans fat acid (TFA) induces simultaneous apoptosis and autophagy in rVF. Furthermore, TFA-induced autophagy is required for this pro-apoptotic effect. Further studies to address the effect of TFA on the heart may reveal significant translational value for prevention of TFA-linked heart disease.
  •  
4.
  • Ghavami, Saeid, et al. (author)
  • Brevinin-2R semi-selectively kills cancer cells by a distinct mechanism, which involves the lysosomal-mitochondrial death pathway
  • 2008
  • In: Journal of Cellular and Molecular Medicine (Print). - : Wiley-Blackwell. - 1582-1838 .- 1582-4934. ; 12:3, s. 1005-1022
  • Journal article (peer-reviewed)abstract
    • Brevinin-2R is a novel non-hemolytic defensin that was isolated from the skin of the frog Rana ridibunda. It exhibits preferential cytotoxicity towards malignant cells, including Jurkat (T-cell leukemia), BJAB (B-cell lymphoma), HT29/219, SW742 (colon carcinomas), L929 (fibrosarcoma), MCF-7 (breast adenocarcinoma), A549 (lung carcinoma), as compared to primary cells including peripheral blood mononuclear cells (PBMC), T cells and human lung fibroblasts. Jurkat and MCF-7 cells overexpressing Bcl2, and L929 and MCF-7 over-expressing a dominant-negative mutant of a pro-apoptotic BNIP3 (ΔTM-BNIP3) were largely resistant towards Brevinin-2R treatment. The decrease in mitochondrial membrane potential (ΔΨm), or total cellular ATP levels, and increased reactive oxygen species (ROS) production, but not caspase activation or the release of apoptosis-inducing factor (AIF) or endonuclease G (Endo G), were early indicators of Brevinin-2R-triggered death. Brevinin-2R interacts with both early and late endosomes. Lysosomal membrane permeabilization inhibitors and inhibitors of cathepsin-B and cathepsin-L prevented Brevinin-2R-induced cell death. Autophagosomes have been detected upon Brevinin-2R treatment. Our results show that Brevinin-2R activates the lysosomalmitochondrial death pathway, and involves autophagy-like cell death.
  •  
5.
  • Ghavami, Saeid, et al. (author)
  • S100A8/A9 induces autophagy and apoptosis via ROS-mediated cross-talk between mitochondria and lysosomes that involves BNIP3
  • 2010
  • In: Cell Research. - : Springer Science and Business Media LLC. - 1001-0602 .- 1748-7838. ; 20:3, s. 314-331
  • Journal article (peer-reviewed)abstract
    • The complex formed by two members of the S100 calcium-binding protein family, S100A8/A9, exerts apoptosis-inducing activity in various cells of different origins. Here, we present evidence that the underlying molecular mechanisms involve both programmed cell death I (PCD I, apoptosis) and PCD II (autophagy)-like death. Treatment of cells with S100A8/A9 caused the increase of Beclin-1 expression as well as Atg12-Atg5 formation. S100A8/A9-induced cell death was partially inhibited by the specific PI3-kinase class III inhibitor, 3-methyladenine (3-MA), and by the vacuole H+-ATPase inhibitor, bafilomycin-A1 (Baf-A1). S100A8/A9 provoked the translocation of BNIP3, a BH3 only pro-apoptotic Bcl2 family member, to mitochondria. Consistent with this finding, ΔTM-BNIP3 overexpression partially inhibited S100A8/A9-induced cell death, decreased reactive oxygen species (ROS) generation, and partially protected against the decrease in mitochondrial transmembrane potential in S100A8/A9-treated cells. In addition, either ΔTM-BNIP3 overexpression or N-acetyl-L-cysteine co-treatment decreased lysosomal activation in cells treated with S100A8/A9. Our data indicate that S100A8/A9-promoted cell death occurs through the cross-talk of mitochondria and lysosomes via ROS and the process involves BNIP3.
  •  
6.
  • Ghavami, Saeid, et al. (author)
  • Airway mesenchymal cell death by mevalonate cascade inhibition : integration of autophagy, unfolded protein response and apoptosis focusing on Bcl2 family proteins
  • 2014
  • In: Biochimica et Biophysica Acta. Molecular Cell Research. - : Elsevier. - 0167-4889 .- 1879-2596. ; 1843:7, s. 1259-1271
  • Journal article (peer-reviewed)abstract
    • HMG-CoA reductase, the proximal rate-limiting enzyme in the mevalonate pathway, is inhibited by statins. Beyond their cholesterol lowering impact, statins have pleiotropic effects and their use is linked to improved lung health. We have shown that mevalonate cascade inhibition induces apoptosis and autophagy in cultured human airway mesenchymal cells. Here, we show that simvastatin also induces endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) in these cells. We tested whether coordination of ER stress, autophagy and apoptosis determines survival or demise of human lung mesenchymal cells exposed to statin. We observed that simvastatin exposure activates UPR (activated transcription factor 4, activated transcription factor 6 and IRE1 alpha) and caspase-4 in primary human airway fibroblasts and smooth muscle cells. Exogenous mevalonate inhibited apoptosis, autophagy and UPR, but exogenous cholesterol was without impact, indicating that sterol intermediates are involved with mechanisms mediating statin effects. Caspase-4 inhibition decreased simvastatin-induced apoptosis, whereas inhibition of autophagy by ATG7 or ATG3 knockdown significantly increased cell death. In BAX(-/-)/BAIC(-/) murine embryonic fibroblasts, simvastatin-triggered apoptotic and UPR events were abrogated, but autophagy flux was increased leading to cell death via necrosis. Our data indicate that mevalonate cascade inhibition, likely associated with depletion of sterol intermediates, can lead to cell death via coordinated apoptosis, autophagy, and ER stress. The interplay between these pathways appears to be principally regulated by autophagy and Bcl-2-family pro-apoptotic proteins. These findings uncover multiple mechanisms of action of statins that could contribute to refining the use of such agent in treatment of lung disease.
  •  
7.
  • Ghavami, Saeid, et al. (author)
  • Mevalonate Cascade Regulation of Airway Mesenchymal Cell Autophagy and Apoptosis: A Dual Role for p53
  • 2011
  • In: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 6:1, s. 0016523-
  • Journal article (peer-reviewed)abstract
    • Statins inhibit the proximal steps of cholesterol biosynthesis, and are linked to health benefits in various conditions, including cancer and lung disease. We have previously investigated apoptotic pathways triggered by statins in airway mesenchymal cells, and identified reduced prenylation of small GTPases as a primary effector mechanism leading to p53-mediated cell death. Here, we extend our studies of statin-induced cell death by assessing endpoints of both apoptosis and autophagy, and investigating their interplay and coincident regulation. Using primary cultured human airway smooth muscle (HASM) and human airway fibroblasts (HAF), autophagy, and autophagosome formation and flux were assessed by transmission electron microscopy, cytochemistry (lysosome number and co-localization with LC3) and immunoblotting (LC3 lipidation and Atg 12-5 complex formation). Chemical inhibition of autophagy increased simvastatin-induced caspase activation and cell death. Similarly, Atg5 silencing with shRNA, thus preventing Atg5-12 complex formation, increased proapoptotic effects of simvastatin. Simvastatin concomitantly increased p53-dependent expression of p53 up-regulated modulator of apoptosis (PUMA), NOXA, and damage-regulated autophagy modulator (DRAM). Notably both mevalonate cascade inhibition-induced autophagy and apoptosis were p53 dependent: simvastatin increased nuclear p53 accumulation, and both cyclic pifithrin-alpha and p53 shRNAi partially inhibited NOXA, PUMA expression and caspase-3/7 cleavage (apoptosis) and DRAM expression, Atg5-12 complex formation, LC3 lipidation, and autophagosome formation (autophagy). Furthermore, the autophagy response is induced rapidly, significantly delaying apoptosis, suggesting the existence of a temporally coordinated p53 regulation network. These findings are relevant for the development of statin-based therapeutic approaches in obstructive airway disease.
  •  
8.
  • Ghavami, Saeid, et al. (author)
  • Role of BNIP3 in TNF-induced cell death - TNF upregulates BNIP3 expression
  • 2009
  • In: Biochimica et Biophysica Acta. Molecular Cell Research. - : Elsevier. - 0167-4889 .- 1879-2596. ; 1793:3, s. 546-560
  • Journal article (peer-reviewed)abstract
    • Tumor necrosis factor alpha (TNF) is a cytokine that induces caspase-dependent (apoptotic) and caspase-independent (necrosis-like) cell death in different cells. We used the murine fibrosarcoma cell line model L929 and a stable L929 transfectant over-expressing a mutated dominant-negative form of BNIP3 lacking the C-terminal transmembrane (TM) domain (L929-ΔTM-BNIP3) to test if TNF-induced cell death involved pro-apoptotic Bcl2 protein BNIP3. Treatment of cells with TNF in the absence of actinomycin D caused a rapid fall in the mitochondrial membrane potential (ΔΨm) and a prompt increase in reactive oxygen species (ROS) production, which was significantly less pronounced in L929-ΔTM-BNIP3. TNF did not cause the mitochondrial release of apoptosis inducing factor (AIF) and Endonuclease G (Endo-G) but provoked the release of cytochrome c, Smac/Diablo, and Omi/HtrA2 at similar levels in both L929 and in L929-ΔTM-BNIP3 cells. We observed TNF-associated increase in the expression of BNIP3 in L929 that was mediated by nitric oxide and significantly inhibited by nitric oxide synthase inhibitor N5-(methylamidino)-l-ornithine acetate. In L929, lysosomal swelling and activation were markedly increased as compared to L929-ΔTM-BNIP3 and could be inhibited by treatment with inhibitors to vacuolar H+-ATPase and cathepsins −B/−L. Together, these data indicate that TNF-induced cell death involves BNIP3, ROS production, and activation of the lysosomal death pathway.
  •  
9.
  • Ghavami, Saeid, et al. (author)
  • Statin-triggered cell death in primary human lung mesenchyrnal cells involves p53-PUMA and release of Smac and Omi but not cytochrome c
  • 2010
  • In: Biochimica et Biophysica Acta. - : Elsevier. - 0006-3002 .- 1878-2434. ; 1803:4, s. 452-467
  • Journal article (peer-reviewed)abstract
    • Statins inhibit 3-hydroxy-3-methyl-glutarylcoenzyme CoA (HMG-CoA) reductase, the proximal enzyme forcholesterol biosynthesis. They exhibit pleiotropic effects and are linked to health benefits for diseasesincluding cancer and lung disease. Understanding their mechanism of action could point to new therapies,thus we investigated the response of primary cultured human airway mesenchymal cells, which play aneffector role in asthma and chronic obstructive lung disease (COPD), to simvastatin exposure. Simvastatininduced apoptosis involving caspase-9, -3 and -7, but not caspase-8 in airway smooth muscle cells andfibroblasts. HMG-CoA inhibition did not alter cellular cholesterol content but did abrogate de novocholesterol synthesis. Pro-apoptotic effects were prevented by exogenous mevalonate, geranylgeranylpyrophosphate and farnesyl pyrophosphate, downstream products of HMG-CoA. Simvastatin increasedexpression of Bax, oligomerization of Bax and Bak, and expression of BH3-only p53-dependent genes, PUMAand NOXA. Inhibition of p53 and silencing of p53 unregulated modulator of apoptosis (PUMA) expressionpartly counteracted simvastatin-induced cell death, suggesting a role for p53-independent mechanisms.Simvastatin did not induce mitochondrial release of cytochrome c, but did promote release of inhibitor ofapoptosis (IAP) proteins, Smac and Omi. Simvastatin also inhibited mitochondrial fission with the loss ofmitochondrial Drp1, an essential component of mitochondrial fission machinery. Thus, simvastatin activatesnovel apoptosis pathways in lung mesenchymal cells involving p53, IAP inhibitor release, and disruption ofmitochondrial fission.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view