SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Halim Joseph 1985 ) "

Search: WFRF:(Halim Joseph 1985 )

  • Result 1-10 of 15
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Palisaitis, Justinas, 1983-, et al. (author)
  • On the Structural Stability of MXene and the Role of Transition Metal Adatoms
  • 2018
  • In: Nanoscale. - : Royal Society of Chemistry. - 2040-3364 .- 2040-3372. ; 10:23, s. 10850-10855
  • Journal article (peer-reviewed)abstract
    • In the present communication, the atomic structure and coordination of surface adsorbed species on Nb2C MXene is investigated over time. In particular, the influence of the Nb adatoms on the structural stability and oxidation behavior of the MXene is addressed. This investigation is based on plan-view geometry observations of single Nb2C MXene sheets by a combination of atomic-resolution scanning transmission electron microscopy (STEM), electron energy loss spectroscopy (EELS) and STEM image simulations.
  •  
2.
  •  
3.
  • Halim, Joseph, 1985- (author)
  • Synthesis and Characterization of 2D Nanocrystals and Thin Films of Transition Metal Carbides (MXenes)
  • 2014
  • Licentiate thesis (other academic/artistic)abstract
    • Two dimensional (2D) materials have received growing interest because of their unique properties compared to their bulk counterparts. Graphene is the archetype 2D solid, but other materials beyond graphene, such as MoS2 and BN have become potential candidates for several applications. Recently, a new family of 2D materials of early transition metal carbides and carbonitrides (Ti2CTx, Ti3C2Tx, Ti3CNTx, Ta4C3Tx, and more), labelled MXenes, has been discovered, where T stands for the surface-terminating groups.Before the present work, MXenes had only been synthesized in the form of exfoliated and delaminated powders, which is not suitable for electronic applications. In this thesis, I demonstrate the synthesis of MXenes as epitaxial thin films, a more suitable form for electronic and photonic applications. Results show that 2D epitaxial Ti3C2Tx films - produced by HF and NH4HF2 etching of magnetron sputter-grown Ti3AlC2 - exhibit metallic conductive behaviour down to 100 K and are 90% transparent to light in the visible-infrared range. The results from this work may open the door for MXenes as potential candidates for transparent conductive electrodes as well as in electronic, photonic and sensing applications.MXenes have been shown to intercalate cations and molecules between their layers that in turn can alter the surface termination groups. There is therefore a need to study the surface chemistries of synthetized MXenes to be able to study the effect of intercalation as well as altering the surface termination groups on the electronic structure and chemical states of the elements present in MXene layers. X-ray Photoelectron Spectroscopy (XPS) in-depth characterization was used to investigate surface chemistries of Ti3C2Tx and Ti2CTx. This thesis includes the discussion of the effect of Ar+ sputtering and the number of layers on the surface chemistry of MXenes. This study serves as a baseline for chemical modification and tailoring of the surface chemistry groups to potential uses and applications.New MXene phases, Nb2CTx and V2CTx, are shown in this thesis to be produced from HF chemical etching of Nb2AlC and V2AlC powders. Characterization of the produced MXenes was carried out using Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD), Transmission Electron Microscope (TEM) and XPS. Nb2CTx and V2CTx showed promising performance as electrodes for Li-ion batteries.In this thesis, electrochemical etching was used in an attempt to produce 2D metal carbides (MXene) from their ternary metal carbides, Ti3SiC2, Ti3AlC2 and Ti2AlC MAX phases. MAX phases in the form of highly dense bulk produced by Hot Isostatic Press. Several etching solutions were used such as HF, NaCl and HCl. Unlike the HF chemical etching of MAX phases, which results in MXenes, the electrochemical etching resulted in Carbide Derived Carbon (CDC). Here, I show the characterization of the produced CDC using several techniques such as XRD, TEM, Raman spectroscopy, and XPS. Electrochemical characterization was performed in the form of cyclic voltammetry, which sheds light on the etching mechanism.
  •  
4.
  • Halim, Joseph, 1985- (author)
  • Synthesis and transport properties of 2D transition metal carbides (MXenes)
  • 2018
  • Doctoral thesis (other academic/artistic)abstract
    • Since the isolation and characterization of graphene, there has been a growing interest in 2D materials owing to their unique properties compared to their 3D counterparts. Recently, a family of 2D materials of early transition metal carbides and nitrides, labelled MXenes, has been discovered (Ti2CTz, Ti3C2Tz, Mo2TiC2Tz, Ti3CNTz, Ta4C3Tz, Ti4N3Tz among many others), where T stands for surface-terminating groups (O, OH, and F). MXenes are mostly produced by selectively etching A layers (where A stands for group A elements, mostly groups 13 and 14) from the MAX phases. The latter are a family of layered ternary carbides and/or nitrides and have a general formula of Mn+1AXn (n = 1-3), where M is a transition metal and X is carbon and/or nitrogen. The produced MXenes have a conductive carbide core and a non-conductive O-, OH- and/or F-terminated surface, which allows them to work as electrodes for energy storage applications, such as Li-ion batteries and supercapacitors.Prior to this work, MXenes were produced in the form of flakes of lateral dimension of about 1 to 2 microns; such dimensions and form are not suitable for electronic characterization and applications. I have synthesized various MXenes (Ti3C2Tz, Ti2CTz and Nb2CTz) as epitaxial thin films, a more suitable form for electronic and photonic applications. These films were produced by HF, NH4HF2 or LiF + HCl etching of magnetron sputtered epitaxial Ti3AlC2, Ti2AlC, and Nb2AlC thin films. For transport properties of the Ti-based MXenes, Ti2CTz and Ti3C2Tz, changing n from 1 to 2 resulted in an increase in conductivity but had no effect on the transport mechanism (i.e. both Ti3C2Tx and Ti2CTx were metallic). In order to examine whether the electronic properties of MXenes differ when going from a few layers to a single flake, similar to graphene, the electrical characterization of a single Ti3C2Tz flake with a lateral size of about 10 μm was performed. These measurements, the first for MXene, demonstrated its metallic nature, along with determining the nature of the charge carriers and their mobility. This indicates that Ti3C2Tz is inherently of 2D nature independent of the number of stacked layers, unlike graphene, where the electronic properties change based on the number of stacked layers.Changing the transition metal from Ti to Nb, viz. comparing Ti2CTz and Nb2CTz thin films, the electronic properties and electronic conduction mechanism differ. Ti2CTz showed metallic-like behavior (resistivity increases with increasing temperature) unlike Nb2CTz where the conduction occurs via variable range hopping mechanism (VRH) - where resistivity decreases with increasing temperature.Furthermore, these studies show the synthesis of pure Mo2CTz in the form of single flakes and freestanding films made by filtering Mo2CTz colloidal suspensions. Electronic characterization of free-standing films made from delaminated Mo2CTz flakes was investigated, showing that a VRH mechanism prevails at low temperatures (7 to ≈ 60 K). Upon vacuum annealing, the room temperature, RT, conductivity of Mo2CTx increased by two orders of magnitude. The conduction mechanism was concluded to be VRH most likely dominated by hopping within each flake.Other Mo-based MXenes, Mo2TiC2Tz and Mo2Ti2C3Tz, showed VRH mechanism at low temperature. However, at higher temperatures up to RT, the transport mechanism was not clearly understood. Therefore, a part of this thesis was dedicated to further investigating the transport properties of Mo-based MXenes. This includes Mo2CTz, out-of-plane ordered Mo2TiC2Tz and Mo2Ti2C3Tz, and vacancy ordered Mo1.33CTz. Magneto-transport of free-standing thin films of the Mo-based MXenes were studied, showing that all Mo-based MXenes have two transport regimes: a VRH mechanism at lower temperatures and a thermally activated process at higher temperatures. All Mo-based MXenes except Mo1.33CTz show that the electrical transport is dominated by inter-flake transfer. As for Mo1.33CTz, the primary electrical transport mechanism is more likely to be intra-flake.The synthesis of vacancy ordered MXenes (Mo1.33CTz and W1.33CTz) raised the question of possible introduction of vacancies in all MXenes. Vacancy ordered MXenes are produced by selective etching of Al and (Sc or Y) atoms from the parent 3D MAX phases, such as (Mo2/3Sc1/3)2AlC, with in-plane chemical ordering of Mo and Sc. However, not all quaternary parent MAX phases form the in-plane chemical ordering of the two M metals; thus the synthesis of the vacancy-ordered MXenes is restricted to a very limited number of MAX phases. I present a new method to obtain MXene flakes with disordered vacancies that may be generalized to all quaternary MAX phases. As proof of concept, I chose Nb-C MXene, as this 2D material has shown promise in several applications, including energy storage, photothermal cell ablation and photocatalysts for hydrogen evolution. Starting from synthetizing (Nb2/3Sc1/3)2AlC quaternary solid solution and etching both the Sc and Al atoms resulted in Nb1.33C material with a large number of vacancies and vacancy clusters. This method may be applicable to other quaternary or higher MAX phases wherein one of the transition metals is more reactive than the other, and it could be of vital importance in applications such as catalysis and energy storage.  
  •  
5.
  • Halim, Joseph, 1985-, et al. (author)
  • Synthesis of Two-Dimensional Nb1.33C (MXene) with Randomly Distributed Vacancies by Etching of the Quaternary Solid Solution (Nb2/3Sc1/3)2AlC MAX Phase
  • 2018
  • In: ACS Applied Nano Materials. - : American Chemical Society (ACS). - 2574-0970. ; 1:6, s. 2455-2460
  • Journal article (peer-reviewed)abstract
    • Introducing point defects in two-dimensional (2D) materials can alter or enhance their properties. Here, we demonstrate how etching a laminated (Nb2/3Sc1/3)2AlC MAX phase (solid solution) of both the Sc and Al atoms results in a 2D Nb1.33C material (MXene) with a large number of vacancies and vacancy clusters. This method is applicable to any quaternary, or higher, MAX phase, wherein one of the transition metals is more reactive than the other and could be of vital importance in applications such as catalysis and energy storage. We also report, for the first time, on the existence of solid solution (Nb2/3Sc1/3)3AlC2 and (Nb2/3Sc1/3)4AlC3 phases.
  •  
6.
  • Halim, Joseph, 1985-, et al. (author)
  • X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes)
  • 2016
  • In: Applied Surface Science. - : ELSEVIER SCIENCE BV. - 0169-4332 .- 1873-5584. ; 362, s. 406-417
  • Journal article (peer-reviewed)abstract
    • In this work, a detailed high resolution X-ray photoelectron spectroscopy (XPS) analysis is presented for select MXenes a recently discovered family of two-dimensional (2D) carbides and carbonitrides. Given their 2D nature, understanding their surface chemistry is paramount. Herein we identify and quantify the surface groups present before, and after, sputter-cleaning as well as freshly prepared vs. aged multi layered cold pressed discs. The nominal compositions of the MXenes studied here are Ti-3 C2Tx,Ti3CNTx, Nb2CTx and Nb4C3Tx where T represents surface groups that this work attempts to quantify. In all the cases, the presence of three surface terminations, O, OH and F, in addition to OH-terminations relatively strongly bonded to H2O molecules, was confirmed. From XPS peak fits, it was possible to establish the average sum of the negative charges of the terminations for the aforementioned MXenes. Based on this work, it is now possible to quantify the nature of the surface terminations. This information can, in turn, be used to better design and tailor these novel 2D materials for various applications. Published by Elsevier B.V.
  •  
7.
  • Helmer, Pernilla, et al. (author)
  • Investigation of 2D Boridene from First Principles and Experiments
  • 2022
  • In: Advanced Functional Materials. - : Wiley. - 1616-3028 .- 1616-301X. ; 32
  • Journal article (peer-reviewed)abstract
    • Recently, a 2D metal boride - boridene - has been experimentally realized in the form of single-layer molybdenum boride sheets with ordered metal vacancies, through selective etching of the nanolaminated 3D parent borides (Mo2/3Y1/3)(2)AlB2 and (Mo2/3Sc1/3)(2)AlB2. The chemical formula of the boridene was suggested to be Mo4/3B2-xTz, where T-z denotes surface terminations. Here, the termination composition and material properties of Mo4/3B2-xTz from both theoretical and experimental perspectives are investigated. Termination sites are considered theoretically for termination species T = O, OH, and F, and the energetically favored termination configuration is identified at z = 2 for both single species terminations and binary termination mixes of different stoichiometries in ordered and disordered configurations. Mo4/3B2-xTz is shown to be dynamically stable for multiple termination stoichiometries, displaying semiconducting, semimetallic, or metallic behavior depending on how different terminations are combined. The approximate chemical formula of a freestanding film of boridene is attained as Mo1.33B1.9O0.3(OH)(1.5)F-0.7 from X-ray photoelectron spectroscopy (XPS) analysis which, within error margins, is consistent with the theoretical results. Finally, metallic and additive-free Mo4/3B2-xTz shows high catalytic performance for the hydrogen evolution reaction, with an onset potential of 0.15 V versus the reversible hydrogen electrode.
  •  
8.
  • Koriukina, Tatiana, 1994-, et al. (author)
  • On the Use of Ti3C2TX MXene as a Negative Electrode Material for Lithium-Ion Batteries
  • 2022
  • In: ACS Omega. - : American Chemical Society (ACS). - 2470-1343. ; 7:45, s. 41696-41710
  • Journal article (peer-reviewed)abstract
    • The pursuit of new and better battery materials has given rise to numerous studies of the possibilities to use two-dimensional negative electrode materials, such as MXenes, in lithium-ion batteries. Nevertheless, both the origin of the capacity and the reasons for significant variations in the capacity seen for different MXene electrodes still remain unclear, even for the most studied MXene: Ti3C2Tx. Herein, freestanding Ti3C2Tx MXene films, composed only of Ti3C2Tx MXene flakes, are studied as additive-free negative lithium-ion battery electrodes, employing lithium metal half-cells and a combination of chronopotentiometry, cyclic voltammetry, X-ray photoelectron spectroscopy, hard X-ray photoelectron spectroscopy, and X-ray absorption spectroscopy experiments. The aim of this study is to identify the redox reactions responsible for the observed reversible and irreversible capacities of Ti3C2Tx- based lithium-ion batteries as well as the reasons for the significant capacity variation seen in the literature. The results demonstrate that the reversible capacity mainly stems from redox reactions involving the Tx-Ti-C titanium species situated on the surfaces of the MXene flakes, whereas the Ti-C titanium present in the core of the flakes remains electro-inactive. While a relatively low reversible capacity is obtained for electrodes composed of pristine Ti3C2Tx MXene flakes, significantly higher capacities are seen after having exposed the flakes to water and air prior to the manufacturing of the electrodes. This is ascribed to a change in the titanium oxidation state at the surfaces of the MXene flakes, resulting in increased concentrations of Ti(II), Ti(III), and Ti(IV) in the Tx-Ti-C surface species. The significant irreversible capacity seen in the first cycles is mainly attributed to the presence of residual water in the Ti3C2Tx electrodes. As the capacities of Ti3C2Tx MXene negative electrodes depend on the concentration of Ti(II), Ti(III), and Ti(IV) in the Tx-Ti-C surface species and the water content, different capacities can be expected when using different manufacturing, pretreatment, and drying procedures.
  •  
9.
  • Lapauw, T., et al. (author)
  • Synthesis of the new MAX phase Zr2AlC
  • 2016
  • In: Journal of the European Ceramic Society. - : ELSEVIER SCI LTD. - 0955-2219 .- 1873-619X. ; 36:8, s. 1847-1853
  • Journal article (peer-reviewed)abstract
    • This study reports on the first experimental evidence of the existence of the Zr2AlC MAX phase, synthesised by means of reactive hot pressing of a ZrH2, Al and C powder mixture. The crystal structure of this compound was investigated by X-ray and neutron diffraction. The lattice parameters were determined and confirmed by high-resolution transmission electron microscopy. The effect of varying the synthesis temperature was investigated, indicating a relatively narrow temperature window for the synthesis of Zr2AlC. ZrC was always present as a secondary phase by hot pressing in the 1475-1575 degrees C range.
  •  
10.
  • Lapauw, T., et al. (author)
  • Synthesis of the novel Zr3AlC2 MAX phase
  • 2016
  • In: Journal of the European Ceramic Society. - : ELSEVIER SCI LTD. - 0955-2219 .- 1873-619X. ; 36:3, s. 943-947
  • Journal article (peer-reviewed)abstract
    • Herein we report, for the first time, on the synthesis and structural characterization of the Zr-based MAX phase, Zr3AlC2, fabricated by reactive hot pressing of ZrH2, Al, and C powders. The crystal structure of Zr3AlC2 was determined by X-ray diffraction and high resolution transmission electron microscopy to be the hexagonal space group P63/mmc. The a and c lattice parameters are 3.33308(6)angstrom and 19.9507(3)angstrom, respectively. The samples include the secondary phases ZrC and Zr-Al intermetallics as confirmed by quantitative electron probe microanalysis. The Vickers hardness, using a force of 30 N, was measured to be 4.4 +/- 0.4 GPa. (C) 2015 Elsevier Ltd. All rights reserved.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 15
Type of publication
journal article (13)
doctoral thesis (1)
licentiate thesis (1)
Type of content
peer-reviewed (13)
other academic/artistic (2)
Author/Editor
Halim, Joseph, 1985- (15)
Rosén, Johanna, 1975 ... (7)
Rosén, Johanna (3)
Barsoum, Michel (3)
Lu, Jun (2)
Hultman, Lars (2)
show more...
Palisaitis, Justinas ... (2)
Zheng, Wei (2)
Eklund, Per (2)
Gogotsi, Yury (2)
Naguib, Michael (2)
Persson, Per O. Å., ... (2)
Lu, Jun, 1962- (2)
Cabioch, T (2)
Magnuson, Martin, 19 ... (2)
Persson, Per, 1971- (2)
Vleugels, J. (2)
Eklund, Per, 1977- (2)
Fahlman, Mats (1)
Liu, Xianjie (1)
Zhang, Fengling (1)
Edström, Kristina, P ... (1)
Ahmed, Bilal (1)
El Ghazaly, Ahmed (1)
Hahlin, Maria (1)
Hultman, Lars, Profe ... (1)
Persson, Per O A (1)
Hultman, Lars, Profe ... (1)
Jansson, Ulf, Profes ... (1)
Barsoum, Michel W. (1)
Nyholm, Leif, 1961- (1)
Yang, Li (1)
Kotronia, Antonia (1)
Rosén, Johanna, Prof ... (1)
Badr, Hussein O. (1)
Björk, Jonas, 1983- (1)
Wickman, Björn, 1980 (1)
Gu, Jian (1)
Yang, Jian (1)
Etman, Ahmed S. (1)
Koriukina, Tatiana, ... (1)
Eklund, Per, Dr, (1)
Tao, Quanzheng (1)
Sun, Zhengming (1)
Rosén, Johanna, Dr. (1)
Helmer, Pernilla (1)
Ghidiu, Michael (1)
Gogotsi, Yury, Profe ... (1)
Nanda, Jagjit (1)
Barsoum, Michael, Vi ... (1)
show less...
University
Linköping University (15)
Uppsala University (2)
Chalmers University of Technology (1)
Language
English (15)
Research subject (UKÄ/SCB)
Natural sciences (14)
Engineering and Technology (4)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view