SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Hammerstein Erica) "

Search: WFRF:(Hammerstein Erica)

  • Result 1-9 of 9
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Frederick, Sara, et al. (author)
  • A Family Tree of Optical Transients from Narrow-line Seyfert 1 Galaxies
  • 2021
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 920:1
  • Journal article (peer-reviewed)abstract
    • The Zwicky Transient Facility (ZTF) has discovered five events (0.01 < z < 0.4) belonging to an emerging class of active galactic nuclei (AGNs) undergoing smooth, large-amplitude, and rapidly rising flares. This sample consists of several transients initially classified as supernovae with narrow spectral lines. However, upon closer inspection, all of the host galaxies display Balmer lines with FWHM(H beta) similar to 900-1400 km s(-1), characteristic of a narrow-line Seyfert 1 (NLSy1) galaxy. The transient events are long lived, over 400 days on average in the observed frame. We report UV and X-ray follow-up of the flares and observe persistent UV emission, with two of the five transients detected with luminous X-ray emission, ruling out a supernova interpretation. We compare the properties of this sample to previously reported flaring NLSy1 galaxies and find that they fall into three spectroscopic categories: 1) Balmer line profiles and Fe ii complexes typical of NLSy1s, 2) strong He ii profiles, and 3) He ii profiles including Bowen fluorescence features. The latter are members of the growing class of AGN flares attributed to enhanced accretion reported by Trakhtenbrot et al. We consider physical interpretations in the context of related transients from the literature. For example, two of the sources show high-amplitude rebrightening in the optical, ruling out a simple tidal disruption event scenario for those transients. We conclude that three of the sample belong to the Trakhtenbrot et al. class and two are tidal disruption events in NLSy1s. We also hypothesize as to why NLSy1s are preferentially the sites of such rapid enhanced flaring activity.
  •  
2.
  • Hammerstein, Erica, et al. (author)
  • The Final Season Reimagined : 30 Tidal Disruption Events from the ZTF-I Survey
  • 2023
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 942:1
  • Journal article (peer-reviewed)abstract
    • Tidal disruption events (TDEs) offer a unique way to study dormant black holes. While the number of observed TDEs has grown thanks to the emergence of wide-field surveys in the past few decades, questions regarding the nature of the observed optical, UV, and X-ray emission remain. We present a uniformly selected sample of 30 spectroscopically classified TDEs from the Zwicky Transient Facility Phase I survey operations with follow-up Swift UV and X-ray observations. Through our investigation into correlations between light-curve properties, we recover a shallow positive correlation between the peak bolometric luminosity and decay timescales. We introduce a new spectroscopic class of TDE, TDE-featureless, which are characterized by featureless optical spectra. The new TDE-featureless class shows larger peak bolometric luminosities, peak blackbody temperatures, and peak blackbody radii. We examine the differences between the X-ray bright and X-ray faint populations of TDEs in this sample, finding that X-ray bright TDEs show higher peak blackbody luminosities than the X-ray faint subsample. This sample of optically selected TDEs is the largest sample of TDEs from a single survey yet, and the systematic discovery, classification, and follow-up of this sample allows for robust characterization of TDE properties, an important stepping stone looking forward toward the Rubin era.
  •  
3.
  • Srinivasaragavan, Gokul P., et al. (author)
  • A Sensitive Search for Supernova Emission Associated with the Extremely Energetic and Nearby GRB 221009A
  • 2023
  • In: Astrophysical Journal Letters. - 2041-8205 .- 2041-8213. ; 949:2
  • Journal article (peer-reviewed)abstract
    • We report observations of the optical counterpart of the long gamma-ray burst GRB 221009A. Due to the extreme rarity of being both nearby (z = 0.151) and highly energetic (E ( gamma,iso) >= 10(54) erg), GRB 221009A offers a unique opportunity to probe the connection between massive star core collapse and relativistic jet formation across a very broad range of gamma-ray properties. Adopting a phenomenological power-law model for the afterglow and host galaxy estimates from high-resolution Hubble Space Telescope imaging, we use Bayesian model comparison techniques to determine the likelihood of an associated supernova (SN) contributing excess flux to the optical light curve. Though not conclusive, we find moderate evidence (K (Bayes) = 10(1.2)) for the presence of an additional component arising from an associated SN, SN 2022xiw, and find that it must be substantially fainter (<67% as bright at the 99% confidence interval) than SN 1998bw. Given the large and uncertain line-of-sight extinction, we attempt to constrain the SN parameters (M (Ni), M (ej), and E (KE)) under several different assumptions with respect to the host galaxy's extinction. We find properties that are broadly consistent with previous GRB-associated SNe: M (Ni) = 0.05-0.25 M (circle dot), M (ej) = 3.5-11.1 M (circle dot), and E (KE) = (1.6-5.2) x 10(52) erg. We note that these properties are weakly constrained due to the faintness of the SN with respect to the afterglow and host emission, but we do find a robust upper limit on M (Ni) of M (Ni) < 0.36 M (circle dot). Given the tremendous range in isotropic gamma-ray energy release exhibited by GRBs (seven orders of magnitude), the SN emission appears to be decoupled from the central engine in these systems.
  •  
4.
  • Srinivasaragavan, Gokul P., et al. (author)
  • Characterizing the Ordinary Broad-line Type Ic SN 2023pel from the Energetic GRB 230812B
  • 2024
  • In: Astrophysical Journal Letters. - 2041-8205 .- 2041-8213. ; 960:2
  • Journal article (peer-reviewed)abstract
    • We report observations of the optical counterpart of the long gamma-ray burst (GRB) GRB 230812B and its associated supernova (SN) SN 2023pel. The proximity (z = 0.36) and high energy (Eγ,iso ∼ 1053 erg) make it an important event to study as a probe of the connection between massive star core collapse and relativistic jet formation. With a phenomenological power-law model for the optical afterglow, we find a late-time flattening consistent with the presence of an associated SN. SN 2023pel has an absolute peak r-band magnitude of Mr = −19.46 ± 0.18 mag (about as bright as SN 1998bw) and evolves on quicker timescales. Using a radioactive heating model, we derive a nickel mass powering the SN of MNi = 0.38 ± 0.01 M⊙ and a peak bolometric luminosity of Lbol ∼ 1.3 × 1043 erg s−1. We confirm SN 2023pel's classification as a broad-line Type Ic SN with a spectrum taken 15.5 days after its peak in the r band and derive a photospheric expansion velocity of vph = 11,300 ± 1600 km s−1 at that phase. Extrapolating this velocity to the time of maximum light, we derive the ejecta mass Mej = 1.0 ± 0.6 M⊙ and kinetic energy EKE = 1.3 +3.3/-1.2 x 1051 erg. We find that GRB 230812B/SN 2023pel has SN properties that are mostly consistent with the overall GRB-SN population. The lack of correlations found in the GRB-SN population between SN brightness and Eγ,iso for their associated GRBs across a broad range of 7 orders of magnitude provides further evidence that the central engine powering the relativistic ejecta is not coupled to the SN powering mechanism in GRB-SN systems.
  •  
5.
  • Stein, Robert, et al. (author)
  • A tidal disruption event coincident with a high-energy neutrino
  • 2021
  • In: Nature Astronomy. - : Springer Science and Business Media LLC. - 2397-3366. ; :5, s. 510-518
  • Journal article (peer-reviewed)abstract
    • Cosmic neutrinos provide a unique window into the otherwise hidden mechanism of particle acceleration in astrophysical objects. The IceCube Collaboration recently reported the likely association of one high-energy neutrino with a flare from the relativistic jet of an active galaxy pointed towards the Earth. However a combined analysis of many similar active galaxies revealed no excess from the broader population, leaving the vast majority of the cosmic neutrino flux unexplained. Here we present the likely association of a radio-emitting tidal disruption event, AT2019dsg, with a second high-energy neutrino. AT2019dsg was identified as part of our systematic search for optical counterparts to high-energy neutrinos with the Zwicky Transient Facility. The probability of finding any coincident radio-emitting tidal disruption event by chance is 0.5%, while the probability of finding one as bright in bolometric energy flux as AT2019dsg is 0.2%. Our electromagnetic observations can be explained through a multizone model, with radio analysis revealing a central engine, embedded in a UV photosphere, that powers an extended synchrotron-emitting outflow. This provides an ideal site for petaelectronvolt neutrino production. Assuming that the association is genuine, our observations suggest that tidal disruption events with mildly relativistic outflows contribute to the cosmic neutrino flux. The tidal disruption event AT2019dsg is probably associated with a high-energy neutrino, suggesting that such events can contribute to the cosmic neutrino flux. The electromagnetic emission is explained in terms of a central engine, a photosphere and an extended synchrotron-emitting outflow.
  •  
6.
  • Stein, Robert, et al. (author)
  • tdescore : An Accurate Photometric Classifier for Tidal Disruption Events
  • 2024
  • In: Astrophysical Journal Letters. - 2041-8205 .- 2041-8213. ; 965:2
  • Journal article (peer-reviewed)abstract
    • Optical surveys have become increasingly adept at identifying candidate tidal disruption events (TDEs) in large numbers, but classifying these generally requires extensive spectroscopic resources. Here we present tdescore, a simple binary photometric classifier that is trained using a systematic census of ∼3000 nuclear transients from the Zwicky Transient Facility (ZTF). The sample is highly imbalanced, with TDEs representing ∼2% of the total. tdescore is nonetheless able to reject non-TDEs with 99.6% accuracy, yielding a sample of probable TDEs with recall of 77.5% for a precision of 80.2%. tdescore is thus substantially better than any available TDE photometric classifier scheme in the literature, with performance not far from spectroscopy as a method for classifying ZTF nuclear transients, despite relying solely on ZTF data and multiwavelength catalog cross matching. In a novel extension, we use "Shapley additive explanations" to provide a human-readable justification for each individual tdescore classification, enabling users to understand and form opinions about the underlying classifier reasoning. tdescore can serve as a model for photometric identification of TDEs with time-domain surveys, such as the upcoming Rubin observatory.
  •  
7.
  • van Velzen, Sjoert, et al. (author)
  • Seventeen Tidal Disruption Events from the First Half of ZTF Survey Observations : Entering a New Era of Population Studies
  • 2021
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 908:1
  • Journal article (peer-reviewed)abstract
    • While tidal disruption events (TDEs) have long been heralded as laboratories for the study of quiescent black holes, the small number of known TDEs and uncertainties in their emission mechanism have hindered progress toward this promise. Here we present 17 new TDEs that have been detected recently by the Zwicky Transient Facility along with Swift UV and X-ray follow-up observations. Our homogeneous analysis of the optical/UV light curves, including 22 previously known TDEs from the literature, reveals a clean separation of light-curve properties with spectroscopic class. The TDEs with Bowen fluorescence features in their optical spectra have smaller blackbody radii, lower optical luminosities, and higher disruption rates compared to the rest of the sample. The small subset of TDEs that show only helium emission lines in their spectra have the longest rise times, the highest luminosities, and the lowest rates. A high detection rate of Bowen lines in TDEs with small photometric radii could be explained by the high density that is required for this fluorescence mechanism. The stellar debris can provide a source for this dense material. Diffusion of photons through this debris may explain why the rise and fade timescale of the TDEs in our sample are not correlated. We also report, for the first time, the detection of soft X-ray flares from a TDE on similar to day timescales. Based on the fact that the X-ray flares peak at a luminosity similar to the optical/UV blackbody luminosity, we attribute them to brief glimpses through a reprocessing layer that otherwise obscures the inner accretion flow.
  •  
8.
  • Yao, Yuhan, et al. (author)
  • The Tidal Disruption Event AT2021ehb : Evidence of Relativistic Disk Reflection, and Rapid Evolution of the Disk-Corona System
  • 2022
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 937:1
  • Journal article (peer-reviewed)abstract
    • We present X-ray, UV, optical, and radio observations of the nearby (≈78 Mpc) tidal disruption event AT2021ehb/ZTF21aanxhjv during its first 430 days of evolution. AT2021ehb occurs in the nucleus of a galaxy hosting a≈107 M⊙ black hole (MBH inferred from host galaxy scaling relations). High-cadence Swift and Neutron Star Interior Composition Explorer (NICER) monitoring reveals a delayed X-ray brightening. The spectrum first undergoes a gradual soft → hard transition and then suddenly turns soft again within 3 days at δt≈272 days during which the X-ray flux drops by a factor of 10. In the joint NICER+NuSTAR observation (δt = 264 days, harder state), we observe a prominent nonthermal component up to 30 keV and an extremely broad emission line in the iron K band. The bolometric luminosity of AT2021ehb reaches a maximum of 6.0+10.4-3.8%LEdd when the X-ray spectrum is the hardest. During the dramatic X-ray evolution, no radio emission is detected, the UV/optical luminosity stays relatively constant, and the optical spectra are featureless. We propose the following interpretations: (i) the soft → hard transition may be caused by the gradual formation of a magnetically dominated corona; (ii) hard X-ray photons escape from the system along solid angles with low scattering optical depth (∼a few) whereas the UV/optical emission is likely generated by reprocessing materials with much larger column density—the system is highly aspherical; and (iii) the abrupt X-ray flux drop may be triggered by the thermal–viscous instability in the inner accretion flow, leading to a much thinner disk.
  •  
9.
  • Yao, Yuhan, et al. (author)
  • Tidal Disruption Event Demographics with the Zwicky Transient Facility : Volumetric Rates, Luminosity Function, and Implications for the Local Black Hole Mass Function
  • 2023
  • In: Astrophysical Journal Letters. - 2041-8205 .- 2041-8213. ; 955:1
  • Journal article (peer-reviewed)abstract
    • We conduct a systematic tidal disruption event (TDE) demographics analysis using the largest sample of optically selected TDEs. A flux-limited, spectroscopically complete sample of 33 TDEs is constructed using the Zwicky Transient Facility over 3 yr (from 2018 October to 2021 September). We infer the black hole (BH) mass (MBH) with host galaxy scaling relations, showing that the sample MBH ranges from 105.1M⊙ to 108.2M⊙. We developed a survey efficiency corrected maximum volume method to infer the rates. The rest-frame g-band luminosity function can be well described by a broken power law of , with Lbk = 1043.1 erg s−1. In the BH mass regime of 105.3 ≲ (MBH/M⊙) ≲ 107.3, the TDE mass function follows , which favors a flat local BH mass function (). We confirm the significant rate suppression at the high-mass end (MBH ≳ 107.5M⊙), which is consistent with theoretical predictions considering direct capture of hydrogen-burning stars by the event horizon. At a host galaxy mass of Mgal ∼ 1010M⊙, the average optical TDE rate is ≈3.2 × 10−5 galaxy−1 yr−1. We constrain the optical TDE rate to be [3.7, 7.4, and 1.6] × 10−5 galaxy−1 yr−1 in galaxies with red, green, and blue colors.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-9 of 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view