SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Han Junwei) "

Search: WFRF:(Han Junwei)

  • Result 1-7 of 7
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Feng, Kui, et al. (author)
  • Fused Bithiophene Imide Dimer-Based n-Type Polymers for High-Performance Organic Electrochemical Transistors
  • 2021
  • In: Angewandte Chemie International Edition. - : WILEY-V C H VERLAG GMBH. - 1433-7851 .- 1521-3773. ; 60:45, s. 24198-24205
  • Journal article (peer-reviewed)abstract
    • The development of n-type organic electrochemical transistors (OECTs) lags far behind their p-type counterparts. In order to address this dilemma, we report here two new fused bithiophene imide dimer (f-BTI2)-based n-type polymers with a branched methyl end-capped glycol side chain, which exhibit good solubility, low-lying LUMO energy levels, favorable polymer chain orientation, and efficient ion transport property, thus yielding a remarkable OECT electron mobility (mu(e)) of up to approximate to 10(-2) cm(2) V-1 s(-1) and volumetric capacitance (C*) as high as 443 F cm(-3), simultaneously. As a result, the f-BTI2TEG-FT-based OECTs deliver a record-high maximum geometry-normalized transconductance of 4.60 S cm(-1) and a maximum mu C* product of 15.2 F cm(-1) V-1 s(-1). The mu C* figure of merit is more than one order of magnitude higher than that of the state-of-the-art n-type OECTs. The emergence of f-BTI2TEG-FT brings a new paradigm for developing high-performance n-type polymers for low-power OECT applications.
  •  
2.
  • Tang, Yumin, et al. (author)
  • Two Compatible Polymer Donors Enabling Ternary Organic Solar Cells with a Small Nonradiative Energy Loss and Broad Composition Tolerance
  • 2020
  • In: Solar RRL. - : Wiley-VCH Verlagsgesellschaft. - 2367-198X. ; 4:11
  • Journal article (peer-reviewed)abstract
    • High-performance nonfullerene ternary organic solar cells (OSCs) with two polymer donors are less frequently reported because of the limited numbers of efficient polymer donors with good compatibility. Herein, a wide-bandgap polymer P1 with a deep-lying highest occupied molecular orbital (HOMO) level is incorporated as the third component into the benchmark PM6:Y6 binary system to fabricate ternary OSCs. The introduction of P1 not only leads to extended absorption coverage and forms a cascade-like energy level alignment but also shows excellent compatibility with PM6, resulting in a favorable morphology in the ternary blend. More importantly, P1 possesses a deeper HOMO level (-5.6 eV) than most well-known donor polymers, which enables resulting ternary OSCs with an improved open-circuit voltage. As a result, the optimized ternary OSCs with 40 wt% P1 in donors achieve a power conversion efficiency (PCE) of 16.2% with a small nonradiative recombination loss of 0.23 eV, which is among the highest values of ternary OSCs based on two polymer donors. In addition, the ternary OSCs show a broad composition tolerance with a high PCE of over 14% throughout the whole blend ratios. These results provide an effective approach to fabricate efficient ternary OSCs by synergizing two wide-bandgap polymer donors.
  •  
3.
  • Li, Long, et al. (author)
  • Discriminative Co-Saliency and Background Mining Transformer for Co-Salient Object Detection
  • 2023
  • In: 2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR. - : IEEE COMPUTER SOC. - 9798350301298 - 9798350301304 ; , s. 7247-7256
  • Conference paper (peer-reviewed)abstract
    • Most previous co-salient object detection works mainly focus on extracting co-salient cues via mining the consistency relations across images while ignore explicit exploration of background regions. In this paper, we propose a Discriminative co-saliency and background Mining Transformer framework (DMT) based on several economical multi-grained correlation modules to explicitly mine both co-saliency and background information and effectively model their discrimination. Specifically, we first propose a region-to-region correlation module for introducing inter-image relations to pixel-wise segmentation features while maintaining computational efficiency. Then, we use two types of pre-defined tokens to mine co-saliency and background information via our proposed contrast-induced pixel-to-token correlation and co-saliency token-to-token correlation modules. We also design a token-guided feature refinement module to enhance the discriminability of the segmentation features under the guidance of the learned tokens. We perform iterative mutual promotion for the segmentation feature extraction and token construction. Experimental results on three benchmark datasets demonstrate the effectiveness of our proposed method. The source code is available at: https://github.com/dragonlee258079/DMT.
  •  
4.
  • Li, Long, et al. (author)
  • Robust Perception and Precise Segmentation for Scribble-Supervised RGB-D Saliency Detection
  • 2024
  • In: IEEE Transactions on Pattern Analysis and Machine Intelligence. - : IEEE COMPUTER SOC. - 0162-8828 .- 1939-3539. ; 46:1, s. 479-496
  • Journal article (peer-reviewed)abstract
    • This paper proposes a scribble-based weakly supervised RGB-D salient object detection (SOD) method to relieve the annotation burden from pixel-wise annotations. In view of the ensuing performance drop, we summarize two natural deficiencies of the scribbles and try to alleviate them, which are the weak richness of the pixel training samples (WRPS) and the poor structural integrity of the salient objects (PSIO). WRPS hinders robust saliency perception learning, which can be alleviated via model design for robust feature learning and pseudo labels generation for training sample enrichment. Specifically, we first design a dynamic searching process module as a meta operation to conduct multi-scale and multi-modal feature fusion for the robust RGB-D SOD model construction. Then, a dual-branch consistency learning mechanism is proposed to generate enough pixel training samples for robust saliency perception learning. PSIO makes direct structural learning infeasible since scribbles can not provide integral structural supervision. Thus, we propose an edge-region structure-refinement loss to recover the structural information and make precise segmentation. We deploy all components and conduct ablation studies on two baselines to validate their effectiveness and generalizability. Experimental results on eight datasets show that our method outperforms other scribble-based SOD models and achieves comparable performance with fully supervised state-of-the-art methods.
  •  
5.
  • Liu, Nian, et al. (author)
  • Multi-grained Temporal Prototype Learning for Few-shot Video Object Segmentation
  • 2023
  • In: 2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023). - : IEEE COMPUTER SOC. - 9798350307184 - 9798350307191 ; , s. 18816-18825
  • Conference paper (peer-reviewed)abstract
    • Few-Shot Video Object Segmentation (FSVOS) aims to segment objects in a query video with the same category defined by a few annotated support images. However, this task was seldom explored. In this work, based on IPMT, a state-of-the-art few-shot image segmentation method that combines external support guidance information with adaptive query guidance cues, we propose to leverage multi-grained temporal guidance information for handling the temporal correlation nature of video data. We decompose the query video information into a clip prototype and a memory prototype for capturing local and long-term internal temporal guidance, respectively. Frame prototypes are further used for each frame independently to handle fine-grained adaptive guidance and enable bidirectional clip-frame prototype communication. To reduce the influence of noisy memory, we propose to leverage the structural similarity relation among different predicted regions and the support for selecting reliable memory frames. Furthermore, a new segmentation loss is also proposed to enhance the category discriminability of the learned prototypes. Experimental results demonstrate that our proposed video IPMT model significantly outperforms previous models on two benchmark datasets. Code is available at https://github.com/nankepan/VIPMT.
  •  
6.
  • Sun, Huiliang, et al. (author)
  • A Narrow-Bandgap n-Type Polymer with an Acceptor-Acceptor Backbone Enabling Efficient All-Polymer Solar Cells
  • 2020
  • In: Advanced Materials. - : WILEY-V C H VERLAG GMBH. - 0935-9648 .- 1521-4095. ; 32
  • Journal article (peer-reviewed)abstract
    • Narrow-bandgap polymer semiconductors are essential for advancing the development of organic solar cells. Here, a new narrow-bandgap polymer acceptor L14, featuring an acceptor-acceptor (A-A) type backbone, is synthesized by copolymerizing a dibrominated fused-ring electron acceptor (FREA) with distannylated bithiophene imide. Combining the advantages of both the FREA and the A-A polymer, L14 not only shows a narrow bandgap and high absorption coefficient, but also low-lying frontier molecular orbital (FMO) levels. Such FMO levels yield improved electron transfer character, but unexpectedly, without sacrificing open-circuit voltage (V-oc), which is attributed to a small nonradiative recombination loss (E-loss,E-nr) of 0.22 eV. Benefiting from the improved photocurrent along with the high fill factor andV(oc), an excellent efficiency of 14.3% is achieved, which is among the highest values for all-polymer solar cells (all-PSCs). The results demonstrate the superiority of narrow-bandgap A-A type polymers for improving all-PSC performance and pave a way toward developing high-performance polymer acceptors for all-PSCs.
  •  
7.
  • Zhao, Yunlong, et al. (author)
  • Stable Alkali Metal Ion Intercalation Compounds as Optimized Metal Oxide Nanowire Cathodes for Lithium Batteries
  • 2015
  • In: Nano letters (Print). - : American Chemical Society (ACS). - 1530-6984 .- 1530-6992. ; 15:3, s. 2180-2185
  • Journal article (peer-reviewed)abstract
    • Intercalation of ions in electrode materials has been explored to improve the rate capability in lithium batteries and supercapacitors, due to the enhanced diffusion of Li+ or electrolyte cations. Here, we describe a synergistic effect between crystal structure and intercalated ion by experimental characterization and ab initio calculations, based on more than 20 nanomaterials: five typical cathode materials together with their alkali metal ion intercalation compounds A-M-O (A = Li, Na, K, Rb; M = V, Mo, Co, Mn, Fe-P). Our focus on nanowires is motivated by general enhancements afforded by nanoscale structures that better sustain lattice distortions associated with charge/discharge cycles. We show that preintercalation of alkali metal ions in V-O and Mo-O yields substantial improvement in the Li ion charge/discharge cycling and rate, compared to A-Co-O, A-Mn-O, and A-Fe-P-O. Diffraction and modeling studies reveal that preintercalation with K and Rb ions yields a more stable interlayer expansion, which prevents destructive collapse of layers and allow Li ions to diffuse more freely. This study demonstrates that appropriate alkali metal ion intercalation in admissible structure can overcome the limitation of cyclability as well as rate capability of cathode materials, besides, the preintercalation strategy provides an effective method to enlarge diffusion channel at the technical level, and more generally, it suggests that the optimized design of stable intercalation compounds could lead to substantial improvements for applications in energy storage.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-7 of 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view