SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Hannigan B. M.) "

Search: WFRF:(Hannigan B. M.)

  • Result 1-6 of 6
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Newton, J. N., et al. (author)
  • Changes in health in England, with analysis by English regions and areas of deprivation, 1990-2013 : A systematic analysis for the Global Burden of Disease Study 2013
  • 2015
  • In: The Lancet. - : Lancet Publishing Group. - 0140-6736 .- 1474-547X. ; 386:10010, s. 2257-2274
  • Journal article (peer-reviewed)abstract
    • Background In the Global Burden of Disease Study 2013 (GBD 2013), knowledge about health and its determinants has been integrated into a comparable framework to inform health policy. Outputs of this analysis are relevant to current policy questions in England and elsewhere, particularly on health inequalities. We use GBD 2013 data on mortality and causes of death, and disease and injury incidence and prevalence to analyse the burden of disease and injury in England as a whole, in English regions, and within each English region by deprivation quintile. We also assess disease and injury burden in England attributable to potentially preventable risk factors. England and the English regions are compared with the remaining constituent countries of the UK and with comparable countries in the European Union (EU) and beyond. Methods We extracted data from the GBD 2013 to compare mortality, causes of death, years of life lost (YLLs), years lived with a disability (YLDs), and disability-adjusted life-years (DALYs) in England, the UK, and 18 other countries (the first 15 EU members [apart from the UK] and Australia, Canada, Norway, and the USA [EU15+]). We extended elements of the analysis to English regions, and subregional areas defined by deprivation quintile (deprivation areas). We used data split by the nine English regions (corresponding to the European boundaries of the Nomenclature for Territorial Statistics level 1 [NUTS 1] regions), and by quintile groups within each English region according to deprivation, thereby making 45 regional deprivation areas. Deprivation quintiles were defined by area of residence ranked at national level by Index of Multiple Deprivation score, 2010. Burden due to various risk factors is described for England using new GBD methodology to estimate independent and overlapping attributable risk for five tiers of behavioural, metabolic, and environmental risk factors. We present results for 306 causes and 2337 sequelae, and 79 risks or risk clusters. Findings Between 1990 and 2013, life expectancy from birth in England increased by 5·4 years (95% uncertainty interval 5·0-5·8) from 75·9 years (75·9-76·0) to 81·3 years (80·9-81·7); gains were greater for men than for women. Rates of age-standardised YLLs reduced by 41·1% (38·3-43·6), whereas DALYs were reduced by 23·8% (20·9-27·1), and YLDs by 1·4% (0·1-2·8). For these measures, England ranked better than the UK and the EU15+ means. Between 1990 and 2013, the range in life expectancy among 45 regional deprivation areas remained 8·2 years for men and decreased from 7·2 years in 1990 to 6·9 years in 2013 for women. In 2013, the leading cause of YLLs was ischaemic heart disease, and the leading cause of DALYs was low back and neck pain. Known risk factors accounted for 39·6% (37·7-41·7) of DALYs; leading behavioural risk factors were suboptimal diet (10·8% [9·1-12·7]) and tobacco (10·7% [9·4-12·0]). Interpretation Health in England is improving although substantial opportunities exist for further reductions in the burden of preventable disease. The gap in mortality rates between men and women has reduced, but marked health inequalities between the least deprived and most deprived areas remain. Declines in mortality have not been matched by similar declines in morbidity, resulting in people living longer with diseases. Health policies must therefore address the causes of ill health as well as those of premature mortality. Systematic action locally and nationally is needed to reduce risk exposures, support healthy behaviours, alleviate the severity of chronic disabling disorders, and mitigate the effects of socioeconomic deprivation. Funding Bill & Melinda Gates Foundation and Public Health England. © 2015 Newton et al. Open Access article distributed under the terms of CC BY.
  •  
2.
  •  
3.
  • Clerbaux, C., et al. (author)
  • CO measurements from the ACE-FTS satellite instrument: data analysis and validation using ground-based, airborne and spaceborne observations
  • 2008
  • In: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 8, s. 2569-2594
  • Journal article (peer-reviewed)abstract
    • The Atmospheric Chemistry Experiment (ACE) mission was launched in August 2003 to sound the atmosphere by solar occultation. Carbon monoxide (CO), a good tracer of pollution plumes and atmospheric dynamics, is one of the key species provided by the primary instrument, the ACE-Fourier Transform Spectrometer (ACE-FTS). This instrument performs measurements in both the CO 1-0 and 2-0 ro-vibrational bands, from which vertically resolved CO concentration profiles are retrieved, from the mid-troposphere to the thermosphere. This paper presents an updated description of the ACE-FTS version 2.2 CO data product, along with a comprehensive validation of these profiles using available observations (February 2004 to December 2006). We have compared the CO partial columns with ground-based measurements using Fourier transform infrared spectroscopy and millimeter wave radiometry, and the volume mixing ratio profiles with airborne (both high-altitude balloon flight and airplane) observations. CO satellite observations provided by nadir-looking instruments (MOPITT and TES) as well as limb-viewing remote sensors (MIPAS, SMR and MLS) were also compared with the ACE-FTS CO products. We show that the ACE-FTS measurements provide CO profiles with small retrieval errors (better than 5% from the upper troposphere to 40 km, and better than 10% above). These observations agree well with the correlative measurements, considering the rather loose coincidence criteria in some cases. Based on the validation exercise we assess the following uncertainties to the ACE-FTS measurement data: better than 15% in the upper troposphere (8–12 km), than 30% in the lower stratosphere (12–30 km), and than 25% from 30 to 100 km.
  •  
4.
  • Vigouroux, C., et al. (author)
  • Trends of ozone total columns and vertical distribution from FTIR observations at eight NDACC stations around the globe
  • 2015
  • In: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 15:6, s. 2915-2933
  • Journal article (peer-reviewed)abstract
    • Ground-based Fourier transform infrared (FTIR) measurements of solar absorption spectra can provide ozone total columns with a precision of 2% but also independent partial column amounts in about four vertical layers, one in the troposphere and three in the stratosphere up to about 45 km, with a precision of 5-6 %. We use eight of the Network for the Detection of Atmospheric Composition Change (NDACC) stations having a long-term time series of FTIR ozone measurements to study the total and vertical ozone trends and variability, namely, Ny-Alesund (79 degrees N), Thule (77 degrees N), Kiruna (68 degrees N), Harestua (60 degrees N), Jungfraujoch (47 degrees N), Izana (28 degrees N), Wollongong (34 degrees S) and Lauder (45 degrees S). The length of the FTIR time series varies by station but is typically from about 1995 to present. We applied to the monthly means of the ozone total and four partial columns a stepwise multiple regression model including the following proxies: solar cycle, quasi-biennial oscillation (QBO), El Nino-Southern Oscillation (ENSO), Arctic and Antarctic Oscillation (AO/AAO), tropopause pressure (TP), equivalent latitude (EL), Eliassen-Palm flux (EPF), and volume of polar stratospheric clouds (VPSC). At the Arctic stations, the trends are found mostly negative in the troposphere and lower stratosphere, very mixed in the middle stratosphere, positive in the upper stratosphere due to a large increase in the 1995-2003 period, and non-significant when considering the total columns. The trends for mid-latitude and subtropical stations are all non-significant, except at Lauder in the troposphere and upper stratosphere and at Wollongong for the total columns and the lower and middle stratospheric columns where they are found positive. At Jungfraujoch, the upper stratospheric trend is close to significance (+0.9 +/- 1.0% decade(-1)). Therefore, some signs of the onset of ozone mid-latitude recovery are observed only in the Southern Hemisphere, while a few more years seem to be needed to observe it at the northern mid-latitude station.
  •  
5.
  • Hopfner, M., et al. (author)
  • Validation of MIPAS ClONO2 measurements
  • 2007
  • In: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 7, s. 257-281
  • Journal article (peer-reviewed)abstract
    • Altitude profiles of ClONO2 retrieved with the IMK (Institut fur Meteorologie und Klimaforschung) science-oriented data processor from MIPAS/Envisat (Michelson Interferometer for Passive Atmospheric Sounding on Envisat) mid-infrared limb emission measurements between July 2002 and March 2004 have been validated by comparison with balloon-borne (Mark IV, FIRS2, MIPAS-B), airborne (MIPAS-STR), ground-based (Spitsbergen, Thule, Kiruna, Harestua, Jungfraujoch, Izana, Wollongong, Lauder), and spaceborne (ACE-FTS) observations. With few exceptions we found very good agreement between these instruments and MIPAS with no evidence for any bias in most cases and altitude regions. For balloon-borne measurements typical absolute mean differences are below 0.05 ppbv over the whole altitude range from 10 to 39 km. In case of ACE-FTS observations mean differences are below 0.03 ppbv for observations below 26 km. Above this altitude the comparison with ACE-FTS is affected by the photochemically induced diurnal variation of ClONO2. Correction for this by use of a chemical transport model led to an overcompensation of the photochemical effect by up to 0.1 ppbv at altitudes of 30-35 km in case of MIPAS-ACE-FTS comparisons while for the balloon-borne observations no such inconsistency has been detected. The comparison of MIPAS derived total column amounts with ground-based observations revealed no significant bias in the MIPAS data. Mean differences between MIPAS and FTIR column abundances are 0.11 +/- 0.12 x 10(14) cm(-2) (1.0 +/- 1.1%) and -0.09 +/- 0.19 x 10(14) cm(-2) (-0.8 +/- 1.7%), depending on the coincidence criterion applied. chi(2) tests have been performed to assess the combined precision estimates of MIPAS and the related instruments. When no exact coincidences were available as in case of MIPAS-FTIR or MIPAS-ACE-FTS comparisons it has been necessary to take into consideration a coincidence error term to account for chi(2) deviations. From the resulting chi(2) profiles there is no evidence for a systematic over/underestimation of the MIPAS random error analysis.
  •  
6.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-6 of 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view