SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Hassall Dave) "

Search: WFRF:(Hassall Dave)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Kumar, Abhinav, et al. (author)
  • A Biocompatible Synthetic Lung Fluid Based on Human Respiratory Tract Lining Fluid Composition.
  • 2017
  • In: Pharmaceutical research. - : Springer Science and Business Media LLC. - 0724-8741 .- 1573-904X. ; 34:12, s. 2454-2465
  • Journal article (peer-reviewed)abstract
    • PURPOSE: To characterise a biorelevant simulated lung fluid (SLF) based on the composition of human respiratory tract lining fluid. SLF was compared to other media which have been utilized as lung fluid simulants in terms of fluid structure, biocompatibility and performance in inhalation biopharmaceutical assays.METHODS: The structure of SLF was investigated using cryo-transmission electron microscopy, photon correlation spectroscopy and Langmuir isotherms. Biocompatibility with A549 alveolar epithelial cells was determined by MTT assay, morphometric observations and transcriptomic analysis. Biopharmaceutical applicability was evaluated by measuring the solubility and dissolution of beclomethasone dipropionate (BDP) and fluticasone propionate (FP), in SLF.RESULTS: SLF exhibited a colloidal structure, possessing vesicles similar in nature to those found in lung fluid extracts. No adverse effect on A549 cells was apparent after exposure to the SLF for 24 h, although some metabolic changes were identified consistent with the change of culture medium to a more lung-like composition. The solubility and dissolution of BDP and FP in SLF were enhanced compared to Gamble's solution.CONCLUSION: The SLF reported herein constitutes a biorelevant synthetic simulant which is suitable to study biopharmaceutical properties of inhalation medicines such as those being proposed for an inhaled biopharmaceutics classification system.
  •  
2.
  • Kumar, Abhinav, et al. (author)
  • Differences in the coronal proteome acquired by particles depositing in the lungs of asthmatic versus healthy humans
  • 2017
  • In: Nanomedicine. - : Elsevier BV. - 1549-9634 .- 1549-9642. ; 13:8, s. 2517-2521
  • Journal article (peer-reviewed)abstract
    • Most inhaled nanomedicines in development are for the treatment of lung disease, yet little is known about their interaction with the respiratory tract lining fluids (RTLFs). Here we combined the use of nano-silica, as a protein concentrator, with label-free snapshot proteomics (LC-MS/MS; key findings confirmed by ELISA) to generate a quantitative profile of the RTLF proteome and provided insight into the evolved corona; information that may be used in future to improve drug targeting to the lungs by inhaled medicines. The asthmatic coronal proteome displayed a reduced contribution of surfactant proteins (SP-A and B) and a higher contribution of α1-antitrypsin. Pathway analysis suggested that asthmatic RTLFs may also be deficient in proteins related to metal handling (e.g. lactoferrin). This study demonstrates how the composition of the corona acquired by inhaled nanoparticles is modified in asthma and suggests depressed mucosal immunity even in mild airway disease.
  •  
3.
  • Kumar, Abhinav, et al. (author)
  • Enrichment of immunoregulatory proteins in the biomolecular corona of nanoparticles within human respiratory tract lining fluid
  • 2016
  • In: Nanomedicine. - : Elsevier BV. - 1549-9634 .- 1549-9642. ; 12:4, s. 1033-1043
  • Journal article (peer-reviewed)abstract
    • When inhaled nanoparticles deposit in the lungs, they transit through respiratory tract lining fluid (RTLF) acquiring a biomolecular corona reflecting the interaction of the RTLF with the nanomaterial surface. Label-free snapshot proteomics was used to generate semiquantitative profiles of corona proteins formed around silica (SiO2) and poly(vinyl) acetate (PVAc) nanoparticles in RTLF, the latter employed as an archetype drug delivery vehicle. The evolved PVAc corona was significantly enriched compared to that observed on SiO2 nanoparticles (698 vs. 429 proteins identified); however both coronas contained a substantial contribution from innate immunity proteins, including surfactant protein A, napsin A and complement (C1q and C3) proteins. Functional protein classification supports the hypothesis that corona formation in RTLF constitutes opsonisation, preparing particles for phagocytosis and clearance from the lungs. These data highlight how an understanding of the evolved corona is necessary for the design of inhaled nanomedicines with acceptable safety and tailored clearance profiles. From the Clinical Editor: Inhaled nanoparticles often acquire a layer of protein corona while they go through the respiratory tract. Here, the authors investigated the identity of these proteins. The proper identification would improve the understanding of the use of inhaled nanoparticles in future therapeutics. (C) 2016 Published by Elsevier Inc.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view