SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Hastie Adam) "

Search: WFRF:(Hastie Adam)

  • Result 1-10 of 10
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Conti, David, V, et al. (author)
  • Trans-ancestry genome-wide association meta-analysis of prostate cancer identifies new susceptibility loci and informs genetic risk prediction
  • 2021
  • In: Nature Genetics. - : Springer Nature. - 1061-4036 .- 1546-1718. ; 53:1, s. 65-75
  • Journal article (peer-reviewed)abstract
    • Prostate cancer is a highly heritable disease with large disparities in incidence rates across ancestry populations. We conducted a multiancestry meta-analysis of prostate cancer genome-wide association studies (107,247 cases and 127,006 controls) and identified 86 new genetic risk variants independently associated with prostate cancer risk, bringing the total to 269 known risk variants. The top genetic risk score (GRS) decile was associated with odds ratios that ranged from 5.06 (95% confidence interval (CI), 4.84-5.29) for men of European ancestry to 3.74 (95% CI, 3.36-4.17) for men of African ancestry. Men of African ancestry were estimated to have a mean GRS that was 2.18-times higher (95% CI, 2.14-2.22), and men of East Asian ancestry 0.73-times lower (95% CI, 0.71-0.76), than men of European ancestry. These findings support the role of germline variation contributing to population differences in prostate cancer risk, with the GRS offering an approach for personalized risk prediction. A meta-analysis of genome-wide association studies across different populations highlights new risk loci and provides a genetic risk score that can stratify prostate cancer risk across ancestries.
  •  
2.
  • Wang, Anqi, et al. (author)
  • Characterizing prostate cancer risk through multi-ancestry genome-wide discovery of 187 novel risk variants
  • 2023
  • In: Nature Genetics. - : Springer Nature. - 1061-4036 .- 1546-1718. ; 55:12, s. 2065-2074
  • Journal article (peer-reviewed)abstract
    • The transferability and clinical value of genetic risk scores (GRSs) across populations remain limited due to an imbalance in genetic studies across ancestrally diverse populations. Here we conducted a multi-ancestry genome-wide association study of 156,319 prostate cancer cases and 788,443 controls of European, African, Asian and Hispanic men, reflecting a 57% increase in the number of non-European cases over previous prostate cancer genome-wide association studies. We identified 187 novel risk variants for prostate cancer, increasing the total number of risk variants to 451. An externally replicated multi-ancestry GRS was associated with risk that ranged from 1.8 (per standard deviation) in African ancestry men to 2.2 in European ancestry men. The GRS was associated with a greater risk of aggressive versus non-aggressive disease in men of African ancestry (P = 0.03). Our study presents novel prostate cancer susceptibility loci and a GRS with effective risk stratification across ancestry groups.
  •  
3.
  • Chasman, Daniel I., et al. (author)
  • Integration of genome-wide association studies with biological knowledge identifies six novel genes related to kidney function
  • 2012
  • In: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 21:24, s. 5329-5343
  • Journal article (peer-reviewed)abstract
    • In conducting genome-wide association studies (GWAS), analytical approaches leveraging biological information may further understanding of the pathophysiology of clinical traits. To discover novel associations with estimated glomerular filtration rate (eGFR), a measure of kidney function, we developed a strategy for integrating prior biological knowledge into the existing GWAS data for eGFR from the CKDGen Consortium. Our strategy focuses on single nucleotide polymorphism (SNPs) in genes that are connected by functional evidence, determined by literature mining and gene ontology (GO) hierarchies, to genes near previously validated eGFR associations. It then requires association thresholds consistent with multiple testing, and finally evaluates novel candidates by independent replication. Among the samples of European ancestry, we identified a genome-wide significant SNP in FBXL20 (P 5.6 10(9)) in meta-analysis of all available data, and additional SNPs at the INHBC, LRP2, PLEKHA1, SLC3A2 and SLC7A6 genes meeting multiple-testing corrected significance for replication and overall P-values of 4.5 10(4)2.2 10(7). Neither the novel PLEKHA1 nor FBXL20 associations, both further supported by association with eGFR among African Americans and with transcript abundance, would have been implicated by eGFR candidate gene approaches. LRP2, encoding the megalin receptor, was identified through connection with the previously known eGFR gene DAB2 and extends understanding of the megalin system in kidney function. These findings highlight integration of existing genome-wide association data with independent biological knowledge to uncover novel candidate eGFR associations, including candidates lacking known connections to kidney-specific pathways. The strategy may also be applicable to other clinical phenotypes, although more testing will be needed to assess its potential for discovery in general.
  •  
4.
  • Dussex, Nicolas, et al. (author)
  • Population genomics of the critically endangered kākāpō
  • 2021
  • In: Cell Genomics. - : Elsevier BV. - 2666-979X. ; 1:1
  • Journal article (peer-reviewed)abstract
    • Summary The kākāpō is a flightless parrot endemic to New Zealand. Once common in the archipelago, only 201 individuals remain today, most of them descending from an isolated island population. We report the first genome-wide analyses of the species, including a high-quality genome assembly for kākāpō, one of the first chromosome-level reference genomes sequenced by the Vertebrate Genomes Project (VGP). We also sequenced and analyzed 35 modern genomes from the sole surviving island population and 14 genomes from the extinct mainland population. While theory suggests that such a small population is likely to have accumulated deleterious mutations through genetic drift, our analyses on the impact of the long-term small population size in kākāpō indicate that present-day island kākāpō have a reduced number of harmful mutations compared to mainland individuals. We hypothesize that this reduced mutational load is due to the island population having been subjected to a combination of genetic drift and purging of deleterious mutations, through increased inbreeding and purifying selection, since its isolation from the mainland ∼10,000 years ago. Our results provide evidence that small populations can survive even when isolated for hundreds of generations. This work provides key insights into kākāpō breeding and recovery and more generally into the application of genetic tools in conservation efforts for endangered species.
  •  
5.
  • Hastie, Adam, et al. (author)
  • CO2 evasion from boreal lakes : Revised estimate, drivers of spatial variability, and future projections
  • 2018
  • In: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 24:2, s. 711-728
  • Journal article (peer-reviewed)abstract
    • Lakes (including reservoirs) are an important component of the global carbon (C) cycle, as acknowledged by the 5th assessment report of the IPCC. In the context of lakes, the boreal region is disproportionately important contributing to 27% of the worldwide lake area, despite representing just 14% of global land surface area. In this study, we used a statistical approach to derive a prediction equation for the partial pressure of CO2 (pCO2) in lakes as a function of lake area, terrestrial net primary productivity (NPP) and precipitation (r2 = 0.56), and to create the first high resolution, circumboreal map (0.5) of lake pCO2. The map of pCO2 was combined with lake area from the recently published GLOWABO database and three different estimates of the gas transfer velocity k to produce a resulting map of CO2 evasion (FCO2). For the boreal region we estimate an average, lake area weighted,pCO2 of 966 (678- 1325) μatm and a total FCO2 of 189 (74-347) Tg C yr−1, and evaluate the corresponding uncertainties based on Monte Carlo simulation. Our estimate of FCO2 is approximately twofold greater than previous estimates, as a result of methodological and data source differences. We use our results along with published estimates of the other C fluxes through inland waters to derive a C budget for the boreal region, and find that FCO2 from lakes is the most significant flux of the land-ocean aquatic continuum, and of a similar magnitude as emissions from forest fires. Using the model and applying it to spatially resolved projections of terrestrial NPP and precipitation while keeping everything else constant, we predict a 107% increase in boreal lake FCO2 under emission scenario RCP8.5 by 2100. Our projections are largely driven by increases in terrestrial NPP over the same period, showing the very close connection between the terrestrial and aquatic C cycle.
  •  
6.
  • Lauerwald, Ronny, et al. (author)
  • Inland Water Greenhouse Gas Budgets for RECCAP2: 1. State-Of-The-Art of Global Scale Assessments
  • 2023
  • In: Global Biogeochemical Cycles. - : AMER GEOPHYSICAL UNION. - 0886-6236 .- 1944-9224. ; 37:5
  • Research review (peer-reviewed)abstract
    • Inland waters are important emitters of the greenhouse gasses (GHGs) carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) to the atmosphere. In the framework of the 2nd phase of the REgional Carbon Cycle Assessment and Processes (RECCAP-2) initiative, we review the state of the art in estimating inland water GHG budgets at global scale, which has substantially advanced since the first phase of RECCAP nearly 10 years ago. The development of increasingly sophisticated upscaling techniques, including statistical prediction and process-based models, allows for spatially explicit estimates that are needed for regionalized assessments of continental GHG budgets such as those established for RECCAP. A few recent estimates also resolve the seasonal and/or interannual variability in inland water GHG emissions. Nonetheless, the global-scale assessment of inland water emissions remains challenging because of limited spatial and temporal coverage of observations and persisting uncertainties in the abundance and distribution of inland water surface areas. To decrease these uncertainties, more empirical work on the contributions of hot-spots and hot-moments to overall inland water GHG emissions is particularly needed.
  •  
7.
  • Lu, Yingchang, et al. (author)
  • New loci for body fat percentage reveal link between adiposity and cardiometabolic disease risk
  • 2016
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 7
  • Journal article (peer-reviewed)abstract
    • To increase our understanding of the genetic basis of adiposity and its links to cardiometabolic disease risk, we conducted a genome-wide association meta-analysis of body fat percentage (BF%) in up to 100,716 individuals. Twelve loci reached genome-wide significance (P<5 × 10(-8)), of which eight were previously associated with increased overall adiposity (BMI, BF%) and four (in or near COBLL1/GRB14, IGF2BP1, PLA2G6, CRTC1) were novel associations with BF%. Seven loci showed a larger effect on BF% than on BMI, suggestive of a primary association with adiposity, while five loci showed larger effects on BMI than on BF%, suggesting association with both fat and lean mass. In particular, the loci more strongly associated with BF% showed distinct cross-phenotype association signatures with a range of cardiometabolic traits revealing new insights in the link between adiposity and disease risk.
  •  
8.
  • Parsa, Afshin, et al. (author)
  • Common Variants in Mendelian Kidney Disease Genes and Their Association with Renal Function
  • 2013
  • In: Journal of the American Society of Nephrology. - 1046-6673 .- 1533-3450. ; 24:12, s. 2105-2117
  • Journal article (peer-reviewed)abstract
    • Many common genetic variants identified by genome-wide association studies for complex traits map to genes previously linked to rare inherited Mendelian disorders. A systematic analysis of common single-nucleotide polymorphisms (SNPs) in genes responsible for Mendelian diseases with kidney phenotypes has not been performed. We thus developed a comprehensive database of genes for Mendelian kidney conditions and evaluated the association between common genetic variants within these genes and kidney function in the general population. Using the Online Mendelian Inheritance in Man database, we identified 731 unique disease entries related to specific renal search terms and confirmed a kidney phenotype in 218 of these entries, corresponding to mutations in 258 genes. We interrogated common SNPs (minor allele frequency >5%) within these genes for association with the estimated GFR in 74,354 European-ancestry participants from the CKDGen Consortium. However, the top four candidate SNPs (rs6433115 at LRP2, rs1050700 at TSC1, rs249942 at PALB2, and rs9827843 at ROBO2) did not achieve significance in a stage 2 meta-analysis performed in 56,246 additional independent individuals, indicating that these common SNPs are not associated with estimated GFR. The effect of less common or rare variants in these genes on kidney function in the general population and disease-specific cohorts requires further research.
  •  
9.
  • Pattaro, Cristian, et al. (author)
  • Genetic associations at 53 loci highlight cell types and biological pathways relevant for kidney function
  • 2016
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 7
  • Journal article (peer-reviewed)abstract
    • Reduced glomerular filtration rate defines chronic kidney disease and is associated with cardiovascular and all-cause mortality. We conducted a meta-analysis of genome-wide association studies for estimated glomerular filtration rate (eGFR), combining data across 133,413 individuals with replication in up to 42,166 individuals. We identify 24 new and confirm 29 previously identified loci. Of these 53 loci, 19 associate with eGFR among individuals with diabetes. Using bioinformatics, we show that identified genes at eGFR loci are enriched for expression in kidney tissues and in pathways relevant for kidney development and transmembrane transporter activity, kidney structure, and regulation of glucose metabolism. Chromatin state mapping and DNase I hypersensitivity analyses across adult tissues demonstrate preferential mapping of associated variants to regulatory regions in kidney but not extra-renal tissues. These findings suggest that genetic determinants of eGFR are mediated largely through direct effects within the kidney and highlight important cell types and biological pathways.
  •  
10.
  • Pattaro, Cristian, et al. (author)
  • Genome-Wide Association and Functional Follow-Up Reveals New Loci for Kidney Function
  • 2012
  • In: PLoS Genetics. - : Public Library of Science (PLoS). - 1553-7390 .- 1553-7404. ; 8:3, s. e1002584-
  • Journal article (peer-reviewed)abstract
    • Chronic kidney disease (CKD) is an important public health problem with a genetic component. We performed genomewide association studies in up to 130,600 European ancestry participants overall, and stratified for key CKD risk factors. We uncovered 6 new loci in association with estimated glomerular filtration rate (eGFR), the primary clinical measure of CKD, in or near MPPED2, DDX1, SLC47A1, CDK12, CASP9, and INO80. Morpholino knockdown of mpped2 and casp9 in zebrafish embryos revealed podocyte and tubular abnormalities with altered dextran clearance, suggesting a role for these genes in renal function. By providing new insights into genes that regulate renal function, these results could further our understanding of the pathogenesis of CKD.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 10
Type of publication
journal article (9)
research review (1)
Type of content
peer-reviewed (10)
Author/Editor
Campbell, Harry (5)
Rudan, Igor (5)
Demirkan, Ayse (5)
van Duijn, Cornelia ... (5)
Shuldiner, Alan R. (5)
Oostra, Ben A. (5)
show more...
Wright, Alan F. (5)
Wilson, James F. (5)
Kovacs, Peter (5)
Rivadeneira, Fernand ... (5)
Harris, Tamara B (5)
Liu, Yongmei (5)
Hofman, Albert (5)
Uitterlinden, André ... (5)
Vitart, Veronique (5)
Hayward, Caroline (5)
Gudnason, Vilmundur (5)
Polasek, Ozren (5)
Viikari, Jorma (4)
Portas, Laura (4)
Imboden, Medea (4)
Adam, Martin (4)
Freedman, Barry I. (4)
Johansson, Åsa (4)
Chasman, Daniel I. (4)
Chu, Audrey Y (4)
Gyllensten, Ulf (4)
Metspalu, Andres (4)
Igl, Wilmar (4)
Pramstaller, Peter P ... (4)
de Andrade, Mariza (4)
Schmidt, Reinhold (4)
Schmidt, Helena (4)
Kronenberg, Florian (4)
Koenig, Wolfgang (4)
Aspelund, Thor (4)
Eiriksdottir, Gudny (4)
Homuth, Georg (4)
Launer, Lenore J (4)
Lohman, Kurt (4)
Boban, Mladen (4)
Wild, Sarah H (4)
Zemunik, Tatijana (4)
Coresh, Josef (4)
Li, Man (4)
Hwang, Shih-Jen (4)
Siscovick, David S. (4)
Illig, Thomas (4)
Boerwinkle, Eric (4)
Mitchell, Braxton D. (4)
show less...
University
Uppsala University (9)
Karolinska Institutet (3)
University of Gothenburg (2)
Lund University (2)
Umeå University (1)
Stockholm University (1)
show more...
Linköping University (1)
Swedish Museum of Natural History (1)
show less...
Language
English (10)
Research subject (UKÄ/SCB)
Natural sciences (5)
Medical and Health Sciences (5)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view