SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Hernandez Molina Rita) "

Search: WFRF:(Hernandez Molina Rita)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Abelev, Betty, et al. (author)
  • Measurement of prompt J/psi and beauty hadron production cross sections at mid-rapidity in pp collisions at root s=7 TeV
  • 2012
  • In: Journal of High Energy Physics. - 1029-8479. ; :11
  • Journal article (peer-reviewed)abstract
    • The ALICE experiment at the LHC has studied J/psi production at mid-rapidity in pp collisions at root s = 7 TeV through its electron pair decay on a data sample corresponding to an integrated luminosity L-int = 5.6 nb(-1). The fraction of J/psi from the decay of long-lived beauty hadrons was determined for J/psi candidates with transverse momentum p(t) > 1,3 GeV/c and rapidity vertical bar y vertical bar < 0.9. The cross section for prompt J/psi mesons, i.e. directly produced J/psi and prompt decays of heavier charmonium states such as the psi(2S) and chi(c) resonances, is sigma(prompt J/psi) (p(t) > 1.3 GeV/c, vertical bar y vertical bar < 0.9) = 8.3 +/- 0.8(stat.) +/- 1.1 (syst.)(-1.4)(+1.5) (syst. pol.) mu b. The cross section for the production of b-hadrons decaying to J/psi with p(t) > 1.3 GeV/c and vertical bar y vertical bar < 0.9 is a sigma(J/psi <- hB) (p(t) > 1.3 GeV/c, vertical bar y vertical bar < 0.9) = 1.46 +/- 0.38 (stat.)(-0.32)(+0.26) (syst.) mu b. The results are compared to QCD model predictions. The shape of the p(t) and y distributions of b-quarks predicted by perturbative QCD model calculations are used to extrapolate the measured cross section to derive the b (b) over bar pair total cross section and d sigma/dy at mid-rapidity.
  •  
2.
  • Abelev, Betty, et al. (author)
  • Underlying Event measurements in pp collisions at root s=0.9 and 7 TeV with the ALICE experiment at the LHC
  • 2012
  • In: Journal of High Energy Physics. - 1029-8479. ; :7
  • Journal article (peer-reviewed)abstract
    • We present measurements of Underlying Event observables in pp collisions at root s = 0 : 9 and 7 TeV. The analysis is performed as a function of the highest charged-particle transverse momentum p(T),L-T in the event. Different regions are defined with respect to the azimuthal direction of the leading (highest transverse momentum) track: Toward, Transverse and Away. The Toward and Away regions collect the fragmentation products of the hardest partonic interaction. The Transverse region is expected to be most sensitive to the Underlying Event activity. The study is performed with charged particles above three different p(T) thresholds: 0.15, 0.5 and 1.0 GeV/c. In the Transverse region we observe an increase in the multiplicity of a factor 2-3 between the lower and higher collision energies, depending on the track p(T) threshold considered. Data are compared to PYTHIA 6.4, PYTHIA 8.1 and PHOJET. On average, all models considered underestimate the multiplicity and summed p(T) in the Transverse region by about 10-30%.
  •  
3.
  • Pino-Chamorro, Jose Ángel, et al. (author)
  • Mechanism of [3+2] Cycloaddition of Alkynes to the [Mo3S4(acac)(3)(py)(3)][PF6] Cluster
  • 2015
  • In: Chemistry - A European Journal. - : Wiley-VCH Verlagsgesellschaft. - 0947-6539 .- 1521-3765. ; 21:7, s. 2835-2844
  • Journal article (peer-reviewed)abstract
    • A study, involving kinetic measurements on the stopped-flow and conventional UV/Vis timescales, ESI-MS, NMR spectroscopy and DFT calculations, has been carried out to understand the mechanism of the reaction of [Mo3S4(acac)(3)(py)(3)][PF6] ([1]PF6; acac = acetylacetonate, py = pyridine) with two RC equivalent to CR alkynes (R = CH2OH (btd), COOH (adc)) in CH3CN. Both reactions show polyphasic kinetics, but experimental and computational data indicate that alkyne activation occurs in a single kinetic step through a concerted mechanism similar to that of organic [3+2] cycloaddition reactions, in this case through the interaction with one Mo(mu-S)(2) moiety of [1](+). The rate of this step is three orders of magnitude faster for adc than that for btd, and the products initially formed evolve in subsequent steps into compounds that result from substitution of py ligands or from reorganization to give species with different structures. Activation strain analysis of the [3+2] cycloaddition step reveals that the deformation of the two reactants has a small contribution to the difference in the computed activation barriers, which is mainly associated with the change in the extent of their interaction at the transition-state structures. Subsequent frontier molecular orbital analysis shows that the carboxylic acid substituents on adc stabilize its HOMO and LUMO orbitals with respect to those on btd due to better electron-withdrawing properties. As a result, the frontier molecular orbitals of the cluster and alkyne become closer in energy; this allows a stronger interaction.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view