SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Heynderickx Daniel) "

Search: WFRF:(Heynderickx Daniel)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Futaana, Yoshifumi, et al. (author)
  • Corotation Plasma Environment Model : An Empirical Probability Model of the Jovian Magnetosphere
  • 2018
  • In: IEEE Transactions on Plasma Science. - : IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC. - 0093-3813 .- 1939-9375. ; 46:6, s. 2126-2145
  • Journal article (peer-reviewed)abstract
    • We developed a new empirical model for corotating plasma in the Jovian magnetosphere. The model, named the corotation plasma environment model version 2 (CPEMv2), considers the charge density, velocity vector, and ion temperature based on Galileo/plasma system (PLS) ion data. In addition, we develop hot electron temperature and density models based on Galileo/PLS electron data. All of the models provide respective quantities in the magnetic equator plane of 9-30RJ, while the charge density model can be extended to 3-D space. A characteristic feature of the CPEM is its support of the percentile as a user input. This feature enables us to model extreme conditions in addition to normal states. In this paper, we review the foundations of the new empirical model, present a general derivation algorithm, and offer a detailed formulation of each parameter of the CPEMv2. As all CPEM parameters are of the analytical form, their implementation is straightforward, and execution involves the use of a small number of computational resources. The CPEM is flexible; for example, it can be extended, as new data (from observations or simulation results) become available. The CPEM can be used for the mission operation of the European Space Agency's mission to Jupiter, JUpiter ICy moons Explorer (JUICE), and for future data analyses.
  •  
2.
  • Schrijver, Carolus J., et al. (author)
  • Understanding space weather to shield society : A global road map for 2015-2025 commissioned by COSPAR and ILWS
  • 2015
  • In: Advances in Space Research. - : Elsevier BV. - 0273-1177 .- 1879-1948. ; 55:12, s. 2745-2807
  • Journal article (peer-reviewed)abstract
    • There is a growing appreciation that the environmental conditions that we call space weather impact the technological infrastructure that powers the coupled economies around the world. With that comes the need to better shield society against space weather by improving forecasts, environmental specifications, and infrastructure design. We recognize that much progress has been made and continues to be made with a powerful suite of research observatories on the ground and in space, forming the basis of a Sun Earth system observatory. But the domain of space weather is vast extending from deep within the Sun to far outside the planetary orbits and the physics complex including couplings between various types of physical processes that link scales and domains from the microscopic to large parts of the solar system. Consequently, advanced understanding of space weather requires a coordinated international approach to effectively provide awareness of the processes within the Sun Earth system through observation-driven models. This roadmap prioritizes the scientific focus areas and research infrastructure that are needed to significantly advance our understanding of space weather of all intensities and of its implications for society. Advancement of the existing system observatory through the addition of small to moderate state-of-the-art capabilities designed to fill observational gaps will enable significant advances. Such a strategy requires urgent action: key instrumentation needs to be sustained, and action needs to be taken before core capabilities are lost in the aging ensemble. We recommend advances through priority focus (1) on observation-based modeling throughout the Sun Earth system, (2) on forecasts more than 12 h ahead of the magnetic structure of incoming coronal mass ejections, (3) on understanding the geospace response to variable solar-wind stresses that lead to intense geomagnetically-induced currents and ionospheric and radiation storms, and (4) on developing a comprehensive specification of space climate, including the characterization of extreme space storms to guide resilient and robust engineering of technological infrastructures. The roadmap clusters its implementation recommendations by formulating three action pathways, and outlines needed instrumentation and research programs and infrastructure for each of these. An executive summary provides an overview of all recommendations.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view