SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Hinchcliffe R) "

Search: WFRF:(Hinchcliffe R)

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Boniver, R, et al. (author)
  • Medico-legal in ORL
  • 1988
  • In: Acta Oto-Rhino-Laryngologica Belgica. - 0001-6497. ; 42:6, s. 722-771
  • Journal article (peer-reviewed)
  •  
2.
  • Keating, C., et al. (author)
  • Drivers of ecological assembly in the hindgut of Atlantic Cod fed a macroalgal supplemented diet
  • 2022
  • In: Npj Biofilms and Microbiomes. - : Springer Science and Business Media LLC. - 2055-5008. ; 8:1
  • Journal article (peer-reviewed)abstract
    • It is difficult to disentangle the many variables (e.g. internal or external cues and random events) that shape the microbiota in the gastrointestinal tract of any living species. Ecological assembly processes applied to microbial communities can elucidate these drivers. In our study, farmed Atlantic cod (Gadus morhua) were fed a diet of 10% macroalgae supplement (Ulva rigida [ULVA] or Ascophyllum nodosum [ASCO] or a non-supplemented control diet [CTRL]) over 12 weeks. We determined the influence of ecological assembly processes using a suite of null-modelling tools. We observed dissimilarity in the abundance of common OTUs over time, which was driven by deterministic assembly. The CTRL samples showed selection as a critical assembly process. While dispersal limitation was a driver of the gut microbiome for fish fed the macroalgae supplemented diet at Week 12 (i.e., ASCO and ULVA). Fish from the ASCO grouping diverged into ASCO_N (normal) and ASCO_LG (lower growth), where ASCO_LG individuals found the diet unpalatable. The recruitment of new taxa overtime was altered in the ASCO_LG fish, with the gut microbiome showing phylogenetic underdispersion (nepotistic species recruitment). Finally, the gut microbiome (CTRL and ULVA) showed increasing robustness to taxonomic disturbance over time and lower functional redundancy. This study advances our understanding of the ecological assembly and succession in the hindgut of juvenile Atlantic cod across dietary treatments. Understanding the processes driving ecological assembly in the gut microbiome, in fish research specifically, could allow us to manipulate the microbiome for improved health or resilience to disease for improved aquaculture welfare and production.
  •  
3.
  • Keating, C., et al. (author)
  • Temporal changes in the gut microbiota in farmed Atlantic cod (Gadus morhua) outweigh the response to diet supplementation with macroalgae
  • 2021
  • In: Animal Microbiome. - : Springer Science and Business Media LLC. - 2524-4671. ; 3:1
  • Journal article (peer-reviewed)abstract
    • Background Aquaculture successfully meets global food demands for many fish species. However, aquaculture production of Atlantic cod (Gadus morhua) is just 2.5% of total market production. For cod farming to be a viable economic venture specific challenges on how to increase growth, health and farming productivity need to be addressed. Feed ingredients play a key role here. Macroalgae (seaweeds) have been suggested as a functional feed supplement with both health and economic benefits for terrestrial farmed animals and fish. The impact of such dietary supplements to cod gut integrity and microbiota, which contribute to overall fish robustness is unknown. The objective of this study was to supplement the diet of juvenile Atlantic cod with macroalgae and determine the impacts on fish condition and growth, gut morphology and hindgut microbiota composition (16S rRNA amplicon sequencing). Fish were fed one of three diets: control (no macroalgal inclusion), 10% inclusion of either egg wrack (Ascophyllum nodosum) or sea lettuce (Ulva rigida) macroalgae in a 12-week trial. Results The results demonstrated there was no significant difference in fish condition, gut morphology or hindgut microbiota between the U. rigida supplemented fish group and the control group at any time-point. This trend was not observed with the A. nodosum treatment. Fish within this group were further categorised as either 'Normal' or 'Lower Growth'. 'Lower Growth' individuals found the diet unpalatable resulting in reduced weight and condition factor combined with an altered gut morphology and microbiome relative to the other treatments. Excluding this group, our results show that the hindgut microbiota was largely driven by temporal pressures with the microbial communities becoming more similar over time irrespective of dietary treatment. The core microbiome at the final time-point consisted of the orders Vibrionales (Vibrio and Photobacterium), Bacteroidales (Bacteroidetes and Macellibacteroides) and Clostridiales (Lachnoclostridium). Conclusions Our study indicates that U. rigida macroalgae can be supplemented at 10% inclusion levels in the diet of juvenile farmed Atlantic cod without any impact on fish condition or hindgut microbial community structure. We also conclude that 10% dietary inclusion of A. nodosum is not a suitable feed supplement in a farmed cod diet.
  •  
4.
  • Loisel, Julie, et al. (author)
  • A database and synthesis of northern peatland soil properties and Holocene carbon and nitrogen accumulation
  • 2014
  • In: The Holocene. - : SAGE Publications. - 0959-6836 .- 1477-0911. ; 24:9, s. 1028-1042
  • Journal article (peer-reviewed)abstract
    • Here, we present results from the most comprehensive compilation of Holocene peat soil properties with associated carbon and nitrogen accumulation rates for northern peatlands. Our database consists of 268 peat cores from 215 sites located north of 45 degrees N. It encompasses regions within which peat carbon data have only recently become available, such as the West Siberia Lowlands, the Hudson Bay Lowlands, Kamchatka in Far East Russia, and the Tibetan Plateau. For all northern peatlands, carbon content in organic matter was estimated at 42 +/- 3% (standard deviation) for Sphagnum peat, 51 +/- 2% for non-Sphagnum peat, and at 49 +/- 2% overall. Dry bulk density averaged 0.12 +/- 0.07 g/cm(3), organic matter bulk density averaged 0.11 +/- 0.05 g/cm(3), and total carbon content in peat averaged 47 +/- 6%. In general, large differences were found between Sphagnum and non-Sphagnum peat types in terms of peat properties. Time-weighted peat carbon accumulation rates averaged 23 +/- 2 (standard error of mean) g C/m(2)/yr during the Holocene on the basis of 151 peat cores from 127 sites, with the highest rates of carbon accumulation (25-28 g C/m(2)/yr) recorded during the early Holocene when the climate was warmer than the present. Furthermore, we estimate the northern peatland carbon and nitrogen pools at 436 and 10 gigatons, respectively. The database is publicly available at https://peatlands.lehigh.edu.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view