SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Hirsch Anna K. H.) "

Search: WFRF:(Hirsch Anna K. H.)

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Tobias, Deirdre K, et al. (author)
  • Second international consensus report on gaps and opportunities for the clinical translation of precision diabetes medicine
  • 2023
  • In: Nature Medicine. - 1546-170X. ; 29:10, s. 2438-2457
  • Research review (peer-reviewed)abstract
    • Precision medicine is part of the logical evolution of contemporary evidence-based medicine that seeks to reduce errors and optimize outcomes when making medical decisions and health recommendations. Diabetes affects hundreds of millions of people worldwide, many of whom will develop life-threatening complications and die prematurely. Precision medicine can potentially address this enormous problem by accounting for heterogeneity in the etiology, clinical presentation and pathogenesis of common forms of diabetes and risks of complications. This second international consensus report on precision diabetes medicine summarizes the findings from a systematic evidence review across the key pillars of precision medicine (prevention, diagnosis, treatment, prognosis) in four recognized forms of diabetes (monogenic, gestational, type 1, type 2). These reviews address key questions about the translation of precision medicine research into practice. Although not complete, owing to the vast literature on this topic, they revealed opportunities for the immediate or near-term clinical implementation of precision diabetes medicine; furthermore, we expose important gaps in knowledge, focusing on the need to obtain new clinically relevant evidence. Gaps include the need for common standards for clinical readiness, including consideration of cost-effectiveness, health equity, predictive accuracy, liability and accessibility. Key milestones are outlined for the broad clinical implementation of precision diabetes medicine.
  •  
2.
  • Breznau, Nate, et al. (author)
  • Observing many researchers using the same data and hypothesis reveals a hidden universe of uncertainty
  • 2022
  • In: Proceedings of the National Academy of Sciences of the United States of America. - : National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 119:44
  • Journal article (peer-reviewed)abstract
    • This study explores how researchers analytical choices affect the reliability of scientific findings. Most discussions of reliability problems in science focus on systematic biases. We broaden the lens to emphasize the idiosyncrasy of conscious and unconscious decisions that researchers make during data analysis. We coordinated 161 researchers in 73 research teams and observed their research decisions as they used the same data to independently test the same prominent social science hypothesis: that greater immigration reduces support for social policies among the public. In this typical case of social science research, research teams reported both widely diverging numerical findings and substantive conclusions despite identical start conditions. Researchers expertise, prior beliefs, and expectations barely predict the wide variation in research outcomes. More than 95% of the total variance in numerical results remains unexplained even after qualitative coding of all identifiable decisions in each teams workflow. This reveals a universe of uncertainty that remains hidden when considering a single study in isolation. The idiosyncratic nature of how researchers results and conclusions varied is a previously underappreciated explanation for why many scientific hypotheses remain contested. These results call for greater epistemic humility and clarity in reporting scientific findings.
  •  
3.
  • Miethke, Marcus, et al. (author)
  • Towards the sustainable discovery and development of new antibiotics
  • 2021
  • In: Nature Reviews Chemistry. - : Springer Nature. - 2397-3358. ; 5:10, s. 726-749
  • Research review (peer-reviewed)abstract
    • An ever-increasing demand for novel antimicrobials to treat life-threatening infections caused by the global spread of multidrug-resistant bacterial pathogens stands in stark contrast to the current level of investment in their development, particularly in the fields of natural-product-derived and synthetic small molecules. New agents displaying innovative chemistry and modes of action are desperately needed worldwide to tackle the public health menace posed by antimicrobial resistance. Here, our consortium presents a strategic blueprint to substantially improve our ability to discover and develop new antibiotics. We propose both short-term and long-term solutions to overcome the most urgent limitations in the various sectors of research and funding, aiming to bridge the gap between academic, industrial and political stakeholders, and to unite interdisciplinary expertise in order to efficiently fuel the translational pipeline for the benefit of future generations.
  •  
4.
  • Backes, Claudia, et al. (author)
  • Production and processing of graphene and related materials
  • 2020
  • In: 2D Materials. - : IOP Publishing. - 2053-1583. ; 7:2
  • Journal article (peer-reviewed)abstract
    • We present an overview of the main techniques for production and processing of graphene and related materials (GRMs), as well as the key characterization procedures. We adopt a 'hands-on' approach, providing practical details and procedures as derived from literature as well as from the authors' experience, in order to enable the reader to reproduce the results. Section I is devoted to 'bottom up' approaches, whereby individual constituents are pieced together into more complex structures. We consider graphene nanoribbons (GNRs) produced either by solution processing or by on-surface synthesis in ultra high vacuum (UHV), as well carbon nanomembranes (CNM). Production of a variety of GNRs with tailored band gaps and edge shapes is now possible. CNMs can be tuned in terms of porosity, crystallinity and electronic behaviour. Section II covers 'top down' techniques. These rely on breaking down of a layered precursor, in the graphene case usually natural crystals like graphite or artificially synthesized materials, such as highly oriented pyrolythic graphite, monolayers or few layers (FL) flakes. The main focus of this section is on various exfoliation techniques in a liquid media, either intercalation or liquid phase exfoliation (LPE). The choice of precursor, exfoliation method, medium as well as the control of parameters such as time or temperature are crucial. A definite choice of parameters and conditions yields a particular material with specific properties that makes it more suitable for a targeted application. We cover protocols for the graphitic precursors to graphene oxide (GO). This is an important material for a range of applications in biomedicine, energy storage, nanocomposites, etc. Hummers' and modified Hummers' methods are used to make GO that subsequently can be reduced to obtain reduced graphene oxide (RGO) with a variety of strategies. GO flakes are also employed to prepare three-dimensional (3d) low density structures, such as sponges, foams, hydro- or aerogels. The assembly of flakes into 3d structures can provide improved mechanical properties. Aerogels with a highly open structure, with interconnected hierarchical pores, can enhance the accessibility to the whole surface area, as relevant for a number of applications, such as energy storage. The main recipes to yield graphite intercalation compounds (GICs) are also discussed. GICs are suitable precursors for covalent functionalization of graphene, but can also be used for the synthesis of uncharged graphene in solution. Degradation of the molecules intercalated in GICs can be triggered by high temperature treatment or microwave irradiation, creating a gas pressure surge in graphite and exfoliation. Electrochemical exfoliation by applying a voltage in an electrolyte to a graphite electrode can be tuned by varying precursors, electrolytes and potential. Graphite electrodes can be either negatively or positively intercalated to obtain GICs that are subsequently exfoliated. We also discuss the materials that can be amenable to exfoliation, by employing a theoretical data-mining approach. The exfoliation of LMs usually results in a heterogeneous dispersion of flakes with different lateral size and thickness. This is a critical bottleneck for applications, and hinders the full exploitation of GRMs produced by solution processing. The establishment of procedures to control the morphological properties of exfoliated GRMs, which also need to be industrially scalable, is one of the key needs. Section III deals with the processing of flakes. (Ultra)centrifugation techniques have thus far been the most investigated to sort GRMs following ultrasonication, shear mixing, ball milling, microfluidization, and wet-jet milling. It allows sorting by size and thickness. Inks formulated from GRM dispersions can be printed using a number of processes, from inkjet to screen printing. Each technique has specific rheological requirements, as well as geometrical constraints. The solvent choice is critical, not only for the GRM stability, but also in terms of optimizing printing on different substrates, such as glass, Si, plastic, paper, etc, all with different surface energies. Chemical modifications of such substrates is also a key step. Sections IV-VII are devoted to the growth of GRMs on various substrates and their processing after growth to place them on the surface of choice for specific applications. The substrate for graphene growth is a key determinant of the nature and quality of the resultant film. The lattice mismatch between graphene and substrate influences the resulting crystallinity. Growth on insulators, such as SiO2, typically results in films with small crystallites, whereas growth on the close-packed surfaces of metals yields highly crystalline films. Section IV outlines the growth of graphene on SiC substrates. This satisfies the requirements for electronic applications, with well-defined graphene-substrate interface, low trapped impurities and no need for transfer. It also allows graphene structures and devices to be measured directly on the growth substrate. The flatness of the substrate results in graphene with minimal strain and ripples on large areas, allowing spectroscopies and surface science to be performed. We also discuss the surface engineering by intercalation of the resulting graphene, its integration with Si-wafers and the production of nanostructures with the desired shape, with no need for patterning. Section V deals with chemical vapour deposition (CVD) onto various transition metals and on insulators. Growth on Ni results in graphitized polycrystalline films. While the thickness of these films can be optimized by controlling the deposition parameters, such as the type of hydrocarbon precursor and temperature, it is difficult to attain single layer graphene (SLG) across large areas, owing to the simultaneous nucleation/growth and solution/precipitation mechanisms. The differing characteristics of polycrystalline Ni films facilitate the growth of graphitic layers at different rates, resulting in regions with differing numbers of graphitic layers. High-quality films can be grown on Cu. Cu is available in a variety of shapes and forms, such as foils, bulks, foams, thin films on other materials and powders, making it attractive for industrial production of large area graphene films. The push to use CVD graphene in applications has also triggered a research line for the direct growth on insulators. The quality of the resulting films is lower than possible to date on metals, but enough, in terms of transmittance and resistivity, for many applications as described in section V. Transfer technologies are the focus of section VI. CVD synthesis of graphene on metals and bottom up molecular approaches require SLG to be transferred to the final target substrates. To have technological impact, the advances in production of high-quality large-area CVD graphene must be commensurate with those on transfer and placement on the final substrates. This is a prerequisite for most applications, such as touch panels, anticorrosion coatings, transparent electrodes and gas sensors etc. New strategies have improved the transferred graphene quality, making CVD graphene a feasible option for CMOS foundries. Methods based on complete etching of the metal substrate in suitable etchants, typically iron chloride, ammonium persulfate, or hydrogen chloride although reliable, are time- and resource-consuming, with damage to graphene and production of metal and etchant residues. Electrochemical delamination in a low-concentration aqueous solution is an alternative. In this case metallic substrates can be reused. Dry transfer is less detrimental for the SLG quality, enabling a deterministic transfer. There is a large range of layered materials (LMs) beyond graphite. Only few of them have been already exfoliated and fully characterized. Section VII deals with the growth of some of these materials. Amongst them, h-BN, transition metal tri- and di-chalcogenides are of paramount importance. The growth of h-BN is at present considered essential for the development of graphene in (opto) electronic applications, as h-BN is ideal as capping layer or substrate. The interesting optical and electronic properties of TMDs also require the development of scalable methods for their production. Large scale growth using chemical/physical vapour deposition or thermal assisted conversion has been thus far limited to a small set, such as h-BN or some TMDs. Heterostructures could also be directly grown. Section VIII discusses advances in GRM functionalization. A broad range of organic molecules can be anchored to the sp(2) basal plane by reductive functionalization. Negatively charged graphene can be prepared in liquid phase (e.g. via intercalation chemistry or electrochemically) and can react with electrophiles. This can be achieved both in dispersion or on substrate. The functional groups of GO can be further derivatized. Graphene can also be noncovalently functionalized, in particular with polycyclic aromatic hydrocarbons that assemble on the sp(2) carbon network by pi-pi stacking. In the liquid phase, this can enhance the colloidal stability of SLG/FLG. Approaches to achieve noncovalent on-substrate functionalization are also discussed, which can chemically dope graphene. Research efforts to derivatize CNMs are also summarized, as well as novel routes to selectively address defect sites. In dispersion, edges are the most dominant defects and can be covalently modified. This enhances colloidal stability without modifying the graphene basal plane. Basal plane point defects can also be modified, passivated and healed in ultra-high vacuum. The decoration of graphene with metal nanoparticles (NPs) has also received considerable attention, as it allows to exploit synergistic effects between NPs and graphene. Decoration can be either achieved chemically or in the gas phase. All LMs,
  •  
5.
  • Vogt, Viola Lara, et al. (author)
  • Current standards of neuropsychological assessment in epilepsy surgery centers across Europe.
  • 2017
  • In: Epilepsia. - : Wiley. - 1528-1167 .- 0013-9580. ; 58:3, s. 343-355
  • Journal article (peer-reviewed)abstract
    • We explored the current practice with respect to the neuropsychological assessment of surgical epilepsy patients in European epilepsy centers, with the aim of harmonizing and establishing common standards. Twenty-six epilepsy centers and members of "E-PILEPSY" (a European pilot network of reference centers in refractory epilepsy and epilepsy surgery), were asked to report the status of neuropsychological assessment in adults and children via two different surveys. There was a consensus among these centers regarding the role of neuropsychology in the presurgical workup. Strong agreement was found on indications (localization, epileptic dysfunctions, adverse drugs effects, and postoperative monitoring) and the domains to be evaluated (memory, attention, executive functions, language, visuospatial skills, intelligence, depression, anxiety, and quality of life). Although 186 different tests are in use throughout these European centers, a core group of tests reflecting a moderate level of agreement could be discerned. Variability exists with regard to indications, protocols, and paradigms for the assessment of hemispheric language dominance. For the tests in use, little published evidence of clinical validity in epilepsy was provided. Participants in the survey reported a need for improvement concerning the validity of the tests, tools for the assessment of everyday functioning and accelerated forgetting, national norms, and test co-normalization. Based on the present survey, we documented a consensus regarding the indications and principles of neuropsychological testing. Despite the variety of tests in use, the survey indicated that there may be a core set of tests chosen based on experience, as well as on published evidence. By combining these findings with the results of an ongoing systematic literature review, we aim for a battery that can be recommended for the use across epilepsy surgical centers in Europe.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5
Type of publication
journal article (3)
research review (2)
Type of content
peer-reviewed (5)
Author/Editor
Tuomi, Tiinamaija (1)
Wagner, Robert (1)
Yang, Sheng (1)
Mohan, Viswanathan (1)
Morandi, Vittorio (1)
Karlén, Anders (1)
show more...
Franks, Paul W. (1)
Gomez, Maria F (1)
Hansen, Torben (1)
Ahmad, Abrar (1)
Lim, Lee-Ling (1)
Morieri, Mario Luca (1)
Tam, Claudia Ha-Ting (1)
Cheng, Feifei (1)
Chikowore, Tinashe (1)
Dudenhöffer-Pfeifer, ... (1)
Fitipaldi, Hugo (1)
Huang, Chuiguo (1)
Kanbour, Sarah (1)
Sarkar, Sudipa (1)
Motala, Ayesha A (1)
Tye, Sok Cin (1)
Yu, Gechang (1)
Zhang, Yingchai (1)
Provenzano, Michele (1)
Sherifali, Diana (1)
Ma, Ronald C W (1)
Mathioudakis, Nestor ... (1)
Koivula, Robert W (1)
Pratley, Richard E (1)
Hirsch, Irl B. (1)
Mathieu, Chantal (1)
Lipsanen, Harri (1)
Botas, Cristina (1)
Carriazo, Daniel (1)
Rojo, Teofilo (1)
Beyer, André (1)
Liu, Kai (1)
Flanagan, Sarah E (1)
De Franco, Elisa (1)
Hattersley, Andrew T (1)
Gloyn, Anna L (1)
Vilsbøll, Tina (1)
Malmgren, Kristina, ... (1)
Brötz-Oesterhelt, He ... (1)
Palermo, Vincenzo, 1 ... (1)
Parthenios, John (1)
Papagelis, Konstanti ... (1)
Marzari, Nicola (1)
Nolan, John J. (1)
show less...
University
Linköping University (2)
University of Gothenburg (1)
Umeå University (1)
Uppsala University (1)
Lund University (1)
Chalmers University of Technology (1)
Language
English (5)
Research subject (UKÄ/SCB)
Natural sciences (2)
Medical and Health Sciences (2)
Engineering and Technology (1)
Social Sciences (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view