SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Hoekstra Hugo J. W. M.) "

Search: WFRF:(Hoekstra Hugo J. W. M.)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Thompson, Paul M., et al. (author)
  • The ENIGMA Consortium : large-scale collaborative analyses of neuroimaging and genetic data
  • 2014
  • In: BRAIN IMAGING BEHAV. - : Springer Science and Business Media LLC. - 1931-7557 .- 1931-7565. ; 8:2, s. 153-182
  • Journal article (peer-reviewed)abstract
    • The Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) Consortium is a collaborative network of researchers working together on a range of large-scale studies that integrate data from 70 institutions worldwide. Organized into Working Groups that tackle questions in neuroscience, genetics, and medicine, ENIGMA studies have analyzed neuroimaging data from over 12,826 subjects. In addition, data from 12,171 individuals were provided by the CHARGE consortium for replication of findings, in a total of 24,997 subjects. By meta-analyzing results from many sites, ENIGMA has detected factors that affect the brain that no individual site could detect on its own, and that require larger numbers of subjects than any individual neuroimaging study has currently collected. ENIGMA's first project was a genome-wide association study identifying common variants in the genome associated with hippocampal volume or intracranial volume. Continuing work is exploring genetic associations with subcortical volumes (ENIGMA2) and white matter microstructure (ENIGMA-DTI). Working groups also focus on understanding how schizophrenia, bipolar illness, major depression and attention deficit/hyperactivity disorder (ADHD) affect the brain. We review the current progress of the ENIGMA Consortium, along with challenges and unexpected discoveries made on the way.
  •  
2.
  • Pollnau, Markus, et al. (author)
  • DNA separation and fluorescent detection in an optofluidic chip with sub-base-pair resolution
  • 2015
  • In: Microfluidics, BioMEMS, and Medical Microsystems XIII. - : SPIE - International Society for Optical Engineering. - 9781628414103
  • Conference paper (peer-reviewed)abstract
    • DNA sequencing in a lab-on-a-chip aims at providing cheap, high-speed analysis of low reagent volumes to, e.g., identify genomic deletions or insertions associated with genetic illnesses. Detecting single base-pair insertions/deletions from DNA fragments in the diagnostically relevant range of 150-1000 base-pairs requires a sizing accuracy of S < 10(-3). Here we demonstrate S = 4x10(-4). A microfluidic chip was post-processed by femtosecond-laser writing of an optical waveguide. 12 blue-labeled and 23 red-labeled DNA fragments were separated in size by capillary electrophoresis, each set excited by either of two lasers power-modulated at different frequencies, their fluorescence detected by a photomultiplier, and blue/red signals distinguished by Fourier analysis. Different calibration strategies were tested: a) use either set of DNA molecules as reference to calibrate the set-up and identify the base-pair sizes of the other set in the same flow experiment, thereby eliminating variations in temperature, wall-coating and sieving-gel conditions, and actuation voltages; b) use the same molecular set as reference and sample with the same fluorescence label, flown in consecutive experiments; c) perform cross-experiments based on different molecular sets with different labels, flown in consecutive experiments. From the results we conclude: Applying quadratic instead of linear fit functions improves the calibration accuracy. Blue-labeled molecules are separated with higher accuracy. The influence of dye label is higher than fluctuations between two experiments. Choosing a single, suitable dye label combined with reference calibration and sample investigation in consecutive experiments results in S = 4x10(-4), enabling detection of single base-pair insertion/deletion in a lab-on-a-chip.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view