SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Hollis Chris J.) "

Search: WFRF:(Hollis Chris J.)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Tinetti, Giovanna, et al. (author)
  • The EChO science case
  • 2015
  • In: Experimental astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 40:2-3, s. 329-391
  • Journal article (peer-reviewed)abstract
    • The discovery of almost two thousand exoplanets has revealed an unexpectedly diverse planet population. We see gas giants in few-day orbits, whole multi-planet systems within the orbit of Mercury, and new populations of planets with masses between that of the Earth and Neptune-all unknown in the Solar System. Observations to date have shown that our Solar System is certainly not representative of the general population of planets in our Milky Way. The key science questions that urgently need addressing are therefore: What are exoplanets made of? Why are planets as they are? How do planetary systems work and what causes the exceptional diversity observed as compared to the Solar System? The EChO (Exoplanet Characterisation Observatory) space mission was conceived to take up the challenge to explain this diversity in terms of formation, evolution, internal structure and planet and atmospheric composition. This requires in-depth spectroscopic knowledge of the atmospheres of a large and well-defined planet sample for which precise physical, chemical and dynamical information can be obtained. In order to fulfil this ambitious scientific program, EChO was designed as a dedicated survey mission for transit and eclipse spectroscopy capable of observing a large, diverse and well-defined planet sample within its 4-year mission lifetime. The transit and eclipse spectroscopy method, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allows us to measure atmospheric signals from the planet at levels of at least 10(-4) relative to the star. This can only be achieved in conjunction with a carefully designed stable payload and satellite platform. It is also necessary to provide broad instantaneous wavelength coverage to detect as many molecular species as possible, to probe the thermal structure of the planetary atmospheres and to correct for the contaminating effects of the stellar photosphere. This requires wavelength coverage of at least 0.55 to 11 mu m with a goal of covering from 0.4 to 16 mu m. Only modest spectral resolving power is needed, with R similar to 300 for wavelengths less than 5 mu m and R similar to 30 for wavelengths greater than this. The transit spectroscopy technique means that no spatial resolution is required. A telescope collecting area of about 1 m(2) is sufficiently large to achieve the necessary spectro-photometric precision: for the Phase A study a 1.13 m(2) telescope, diffraction limited at 3 mu m has been adopted. Placing the satellite at L2 provides a cold and stable thermal environment as well as a large field of regard to allow efficient time-critical observation of targets randomly distributed over the sky. EChO has been conceived to achieve a single goal: exoplanet spectroscopy. The spectral coverage and signal-to-noise to be achieved by EChO, thanks to its high stability and dedicated design, would be a game changer by allowing atmospheric composition to be measured with unparalleled exactness: at least a factor 10 more precise and a factor 10 to 1000 more accurate than current observations. This would enable the detection of molecular abundances three orders of magnitude lower than currently possible and a fourfold increase from the handful of molecules detected to date. Combining these data with estimates of planetary bulk compositions from accurate measurements of their radii and masses would allow degeneracies associated with planetary interior modelling to be broken, giving unique insight into the interior structure and elemental abundances of these alien worlds. EChO would allow scientists to study exoplanets both as a population and as individuals. The mission can target super-Earths, Neptune-like, and Jupiter-like planets, in the very hot to temperate zones (planet temperatures of 300-3000 K) of F to M-type host stars. The EChO core science would be delivered by a three-tier survey. The EChO Chemical Census: This is a broad survey of a few-hundred exoplanets, which allows us to explore the spectroscopic and chemical diversity of the exoplanet population as a whole. The EChO Origin: This is a deep survey of a subsample of tens of exoplanets for which significantly higher signal to noise and spectral resolution spectra can be obtained to explain the origin of the exoplanet diversity (such as formation mechanisms, chemical processes, atmospheric escape). The EChO Rosetta Stones: This is an ultra-high accuracy survey targeting a subsample of select exoplanets. These will be the bright "benchmark" cases for which a large number of measurements would be taken to explore temporal variations, and to obtain two and three dimensional spatial information on the atmospheric conditions through eclipse-mapping techniques. If EChO were launched today, the exoplanets currently observed are sufficient to provide a large and diverse sample. The Chemical Census survey would consist of > 160 exoplanets with a range of planetary sizes, temperatures, orbital parameters and stellar host properties. Additionally, over the next 10 years, several new ground- and space-based transit photometric surveys and missions will come on-line (e.g. NGTS, CHEOPS, TESS, PLATO), which will specifically focus on finding bright, nearby systems. The current rapid rate of discovery would allow the target list to be further optimised in the years prior to EChO's launch and enable the atmospheric characterisation of hundreds of planets.
  •  
2.
  • Lunt, Daniel J., et al. (author)
  • The DeepMIP contribution to PMIP4 : experimental design for model simulations of the EECO, PETM, and pre-PETM (version 1.0)
  • 2017
  • In: Geoscientific Model Development. - : Copernicus GmbH. - 1991-959X .- 1991-9603. ; 10:2, s. 889-901
  • Journal article (peer-reviewed)abstract
    • Past warm periods provide an opportunity to evaluate climate models under extreme forcing scenarios, in particular high (>800 ppmv) atmospheric CO2 concentrations. Although a post hoc intercomparison of Eocene (similar to 50 Ma) climate model simulations and geological data has been carried out previously, models of past high-CO2 periods have never been evaluated in a consistent framework. Here, we present an experimental design for climate model simulations of three warm periods within the early Eocene and the latest Paleocene (the EECO, PETM, and pre-PETM). Together with the CMIP6 pre-industrial control and abrupt 4 x CO2 simulations, and additional sensitivity studies, these form the first phase of DeepMIP - the Deep-time Model Intercomparison Project, itself a group within the wider Paleo-climate Modelling Intercomparison Project (PMIP). The experimental design specifies and provides guidance on boundary conditions associated with palaeogeography, greenhouse gases, astronomical configuration, solar constant, land surface processes, and aerosols. Initial conditions, simulation length, and output variables are also specified. Finally, we explain how the geological data sets, which will be used to evaluate the simulations, will be developed.
  •  
3.
  • Hollis, Chris, et al. (author)
  • Online remote behavioural intervention for tics in 9- to 17-year-olds : the ORBIT RCT with embedded process and economic evaluation
  • 2023
  • In: Health Technology Assessment. - 1366-5278. ; 27:18, s. 1-120
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: Behavioural therapy for tics is difficult to access, and little is known about its effectiveness when delivered online.OBJECTIVE: To investigate the clinical and cost-effectiveness of an online-delivered, therapist- and parent-supported therapy for young people with tic disorders.DESIGN: Single-blind, parallel-group, randomised controlled trial, with 3-month (primary end point) and 6-month post-randomisation follow-up. Participants were individually randomised (1 : 1), using on online system, with block randomisations, stratified by site. Naturalistic follow-up was conducted at 12 and 18 months post-randomisation when participants were free to access non-trial interventions. A subset of participants participated in a process evaluation.SETTING: Two hospitals (London and Nottingham) in England also accepting referrals from patient identification centres and online self-referrals.PARTICIPANTS: Children aged 9-17 years (1) with Tourette syndrome or chronic tic disorder, (2) with a Yale Global Tic Severity Scale-total tic severity score of 15 or more (or > 10 with only motor or vocal tics) and (3) having not received behavioural therapy for tics in the past 12 months or started/stopped medication for tics within the past 2 months.INTERVENTIONS: Either 10 weeks of online, remotely delivered, therapist-supported exposure and response prevention therapy (intervention group) or online psychoeducation (control).OUTCOME: Primary outcome: Yale Global Tic Severity Scale-total tic severity score 3 months post-randomisation; analysis done in all randomised patients for whom data were available. Secondary outcomes included low mood, anxiety, treatment satisfaction and health resource use. Quality-adjusted life-years are derived from parent-completed quality-of-life measures. All trial staff, statisticians and the chief investigator were masked to group allocation.RESULTS: Two hundred and twenty-four participants were randomised to the intervention (n = 112) or control (n = 112) group. Participants were mostly male (n = 177; 79%), with a mean age of 12 years. At 3 months the estimated mean difference in Yale Global Tic Severity Scale-total tic severity score between the groups adjusted for baseline and site was -2.29 points (95% confidence interval -3.86 to -0.71) in favour of therapy (effect size -0.31, 95% confidence interval -0.52 to -0.10). This effect was sustained throughout to the final follow-up at 18 months (-2.01 points, 95% confidence interval -3.86 to -0.15; effect size -0.27, 95% confidence interval -0.52 to -0.02). At 18 months the mean incremental cost per participant of the intervention compared to the control was £662 (95% confidence interval -£59 to £1384), with a mean incremental quality-adjusted life-year of 0.040 (95% confidence interval -0.004 to 0.083) per participant. The mean incremental cost per quality-adjusted life-year gained was £16,708. The intervention was acceptable and delivered with high fidelity. Parental engagement predicted child engagement and more positive clinical outcomes.HARMS: Two serious, unrelated adverse events occurred in the control group.LIMITATIONS: We cannot separate the effects of digital online delivery and the therapy itself. The sample was predominately white and British, limiting generalisability. The design did not compare to face-to-face services.CONCLUSION: Online, therapist-supported behavioural therapy for young people with tic disorders is clinically and cost-effective in reducing tics, with durable benefits extending up to 18 months.FUTURE WORK: Future work should compare online to face-to-face therapy and explore how to embed the intervention in clinical practice.TRIAL REGISTRATION: This trial is registered as ISRCTN70758207; ClinicalTrials.gov (NCT03483493). The trial is now complete.FUNDING: This project was funded by the National Institute for Health and Care Research (NIHR) Health and Technology Assessment programme (project number 16/19/02) and will be published in full in Health and Technology Assessment; Vol. 27, No. 18. See the NIHR Journals Library website for further project information.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view