SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Holtslag A. A. M.) "

Search: WFRF:(Holtslag A. A. M.)

  • Result 1-6 of 6
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Svensson, Gunilla, et al. (author)
  • Evaluation of the Diurnal Cycle in the Atmospheric Boundary Layer Over Land as Represented by a Variety of Single-Column Models : The Second GABLS Experiment
  • 2011
  • In: Boundary-layer Meteorology. - : Springer Science and Business Media LLC. - 0006-8314 .- 1573-1472. ; 140:2, s. 177-206
  • Journal article (peer-reviewed)abstract
    • We present the main results from the second model intercomparison within the GEWEX (Global Energy and Water cycle EXperiment) Atmospheric Boundary Layer Study (GABLS). The target is to examine the diurnal cycle over land in today's numerical weather prediction and climate models for operational and research purposes. The set-up of the case is based on observations taken during the Cooperative Atmosphere-Surface Exchange Study-1999 (CASES-99), which was held in Kansas, USA in the early autumn with a strong diurnal cycle with no clouds present. The models are forced with a constant geostrophic wind, prescribed surface temperature and large-scale divergence. Results from 30 different model simulations and one large-eddy simulation (LES) are analyzed and compared with observations. Even though the surface temperature is prescribed, the models give variable near-surface air temperatures. This, in turn, gives rise to differences in low-level stability affecting the turbulence and the turbulent heat fluxes. The increase in modelled upward sensible heat flux during the morning transition is typically too weak and the growth of the convective boundary layer before noon is too slow. This is related to weak modelled near-surface winds during the morning hours. The agreement between the models, the LES and observations is the best during the late afternoon. From this intercomparison study, we find that modelling the diurnal cycle is still a big challenge. For the convective part of the diurnal cycle, some of the first-order schemes perform somewhat better while the turbulent kinetic energy (TKE) schemes tend to be slightly better during nighttime conditions. Finer vertical resolution tends to improve results to some extent, but is certainly not the solution to all the deficiencies identified.
  •  
2.
  • Holtslag, A. A. M., et al. (author)
  • STABLE ATMOSPHERIC BOUNDARY LAYERS AND DIURNAL CYCLES : Challenges for Weather and Climate Models
  • 2013
  • In: Bulletin of The American Meteorological Society - (BAMS). - 0003-0007 .- 1520-0477. ; 94:11, s. 1691-1706
  • Journal article (peer-reviewed)abstract
    • The representation of the atmospheric boundary layer is an important part of weather and climate models and impacts many applications such as air quality and wind energy. Over the years, the performance in modeling 2-m temperature and 10-m wind speed has improved but errors are still significant. This is in particular the case under clear skies and low wind speed conditions at night as well as during winter in stably stratified conditions over land and ice. In this paper, the authors review these issues and provide an overview of the current understanding and model performance. Results from weather forecast and climate models are used to illustrate the state of the art as well as findings and recommendations from three intercomparison studies held within the Global Energy and Water Exchanges (GEWEX) Atmospheric Boundary Layer Study (GABLS). Within GABLS, the focus has been on the examination of the representation of the stable boundary layer and the diurnal cycle over land in clear-sky conditions. For this purpose, single-column versions of weather and climate models have been compared with observations, research models, and large-eddy simulations. The intercomparison cases are based on observations taken in the Arctic, Kansas, and Cabauw in the Netherlands. From these studies, we find that even for the noncloudy boundary layer important parameterization challenges remain.
  •  
3.
  • Bosveld, Fred C., et al. (author)
  • The Third GABLS Intercomparison Case for Evaluation Studies of Boundary-Layer Models. Part B : Results and Process Understanding
  • 2014
  • In: Boundary-layer Meteorology. - : Springer Science and Business Media LLC. - 0006-8314 .- 1573-1472. ; 152:2, s. 157-187
  • Journal article (peer-reviewed)abstract
    • We describe and analyze the results of the third global energy and water cycle experiment atmospheric boundary layer Study intercomparison and evaluation study for single-column models. Each of the nineteen participating models was operated with its own physics package, including land-surface, radiation and turbulent mixing schemes, for a full diurnal cycle selected from the Cabauw observatory archive. By carefully prescribing the temporal evolution of the forcings on the vertical column, the models could be evaluated against observations. We focus on the gross features of the stable boundary layer (SBL), such as the onset of evening momentum decoupling, the 2-m minimum temperature, the evolution of the inertial oscillation and the morning transition. New process diagrams are introduced to interpret the variety of model results and the relative importance of processes in the SBL; the diagrams include the results of a number of sensitivity runs performed with one of the models. The models are characterized in terms of thermal coupling to the soil, longwave radiation and turbulent mixing. It is shown that differences in longwave radiation schemes among the models have only a small effect on the simulations; however, there are significant variations in downward radiation due to different boundary-layer profiles of temperature and humidity. The differences in modelled thermal coupling to the land surface are large and explain most of the variations in 2-m air temperature and longwave incoming radiation among models. Models with strong turbulent mixing overestimate the boundary-layer height, underestimate the wind speed at 200 m, and give a relatively large downward sensible heat flux. The result is that 2-m air temperature is relatively insensitive to turbulent mixing intensity. Evening transition times spread 1.5 h around the observed time of transition, with later transitions for models with coarse resolution. Time of onset in the morning transition spreads 2 h around the observed transition time. With this case, the morning transition appeared to be difficult to study, no relation could be found between the studied processes, and the variation in the time of the morning transition among the models.
  •  
4.
  • Lappalainen, Hanna K., et al. (author)
  • Pan-Eurasian Experiment (PEEX) : towards a holistic understanding of the feedbacks and interactions in the land-atmosphere-ocean-society continuum in the northern Eurasian region
  • 2016
  • In: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 16:22, s. 14421-14461
  • Journal article (peer-reviewed)abstract
    • The northern Eurasian regions and Arctic Ocean will very likely undergo substantial changes during the next decades. The Arctic-boreal natural environments play a crucial role in the global climate via albedo change, carbon sources and sinks as well as atmospheric aerosol production from biogenic volatile organic compounds. Furthermore, it is expected that global trade activities, demographic movement, and use of natural resources will be increasing in the Arctic regions. There is a need for a novel research approach, which not only identifies and tackles the relevant multi-disciplinary research questions, but also is able to make a holistic system analysis of the expected feedbacks. In this paper, we introduce the research agenda of the Pan-Eurasian Experiment (PEEX), a multi-scale, multi-disciplinary and international program started in 2012 (https://www.atm.helsinki.fi/peex/). PEEX sets a research approach by which large-scale research topics are investigated from a system perspective and which aims to fill the key gaps in our understanding of the feedbacks and interactions between the land-atmosphereaquatic-society continuum in the northern Eurasian region. We introduce here the state of the art for the key topics in the PEEX research agenda and present the future prospects of the research, which we see relevant in this context.
  •  
5.
  • Kumar, Vijayant, et al. (author)
  • Impact of Surface Flux Formulations and Geostrophic Forcing on Large-Eddy Simulations of Diurnal Atmospheric Boundary Layer Flow
  • 2010
  • In: Journal of Applied Meteorology and Climatology. - 1558-8424 .- 1558-8432. ; 49:7, s. 1496-1516
  • Journal article (peer-reviewed)abstract
    • The impact of surface flux boundary conditions and geostrophic forcing on multiday evolution of flow in the atmospheric boundary layer (ABL) was assessed using large-eddy simulations (LES). The LES investigations included several combinations of surface boundary conditions (temperature and heat flux) and geostrophic forcing (constant, time varying, time and height varying). The setup was based on ABL characteristics observed during a selected period of the Cooperative Atmosphere-Surface Exchange Study-1999 (CASES-99) campaign. The LES cases driven by a constant geostrophic wind achieved the best agreement with the CASES-99 observations specifically in terms of daytime surface fluxes and daytime and nighttime profiles. However, the nighttime fluxes were significantly overestimated. The LES cases with the surface temperature boundary condition and driven by a time-and height-varying geostrophic forcing showed improved agreement with the observed nighttime fluxes, but there was less agreement with other observations (e.g., daytime profiles). In terms of the surface boundary condition, the LES cases driven by either surface temperature or heat fluxes produced similar trends in terms of the daytime profiles and comparisons with data from soundings. However, in reproducing the fluxes and nighttime profiles, the agreement was better with imposed temperature because of its ability to interact dynamically with the air temperature field. Therefore, it is concluded that surface temperature boundary condition is better suited for simulations of temporally evolving ABL flow as in the diurnal evolution of the ABL.
  •  
6.
  • Steeneveld, G. J., et al. (author)
  • Evaluation of Limited-Area Models for the Representation of the Diurnal Cycle and Contrasting Nights in CASES-99
  • 2008
  • In: Journal of Applied Meteorology and Climatology. ; 47:3, s. 869-887
  • Journal article (peer-reviewed)abstract
    • This study evaluates the ability of three limited-area models [the fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model (MM5), the Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS), and the High-Resolution Limited-Area Model (HIRLAM)] to predict the diurnal cycle of the atmospheric boundary layer (ABL) during the Cooperative Atmosphere–Surface Exchange Study (CASES-99) experimental campaign. Special attention is paid to the stable ABL. Limited-area model results for different ABL parameterizations and different radiation transfer parameterizations are compared with the in situ observations. Model forecasts were found to be sensitive to the choice of the ABL parameterization both during the day and at night. At night, forecasts are particularly sensitive to the radiation scheme. All three models underestimate the amplitude of the diurnal temperature cycle (DTR) and the near-surface wind speed. Furthermore, they overestimate the stable boundary layer height for windy conditions and underestimate the stratification of nighttime surface inversions. Favorable parameterizations for the stable boundary layer enable rapid surface cooling, and they have limited turbulent mixing. It was also found that a relatively large model domain is required to model the Great Plains low-level jet. A new scheme is implemented for the stable boundary layer in the Medium-Range Forecast Model (MRF). This scheme introduces a vegetation layer, a new formulation for the soil heat flux, and turbulent mixing based on the local scaling hypothesis. The new scheme improves the representation of surface temperature (especially for weak winds) and the stable boundary layer structure.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-6 of 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view