SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Hoogstraate Janet) "

Search: WFRF:(Hoogstraate Janet)

  • Result 1-10 of 15
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  •  
3.
  • Berggren, Sofia, 1973- (author)
  • Drug Transport and Metabolism in Rat and Human Intestine
  • 2006
  • Doctoral thesis (other academic/artistic)abstract
    • One of the aims of this thesis was to investigate the involvement of efflux proteins, such as the P-glycoprotein (Pgp), in the drug transport in different regions of the rat and the human intestine. The intestinal extrusion of intracellularly formed CYP3A4 metabolites, including whether this extrusion might be mediated by Pgp, was also studied. The model drugs used were local anaesthetics (LA), which have been evaluated for inflammatory bowel disease, such as ropivacaine, lidocaine and bupivacaine. The intestinal permeability to LAs was found to be high throughout all intestinal regions of the rat and human intestine. Results from the Ussing chamber model indicated only minor efflux involvement as the drug permeability was higher in the serosa to mucosa transport direction than in the opposite direction. However, the involvement of efflux in the absorption of LAs could not be verified using in situ single-pass perfusion of rat jejunum. The extrusion of the ropivacaine metabolite, 2´,6´-pipecoloxylidide (PPX), was polarized to the mucosal reservoir of the Ussing chamber for both rat and human intestinal samples, and was probably not caused by any Pgp involvement. The expression levels of CYP3A4 and efflux transporters were consistent with the enzymes’ activity in human intestine. PPX formation was mediated by CYP3A4 in human intestine, and cyp2c and cyp2d in rat intestine. Species differences were observed, as PPX was formed in rat colon, but not human colon. In conclusion, the permeability of ropivacaine, lidocaine and bupivacaine was not subjected to efflux transport of significance for their intestinal uptake. The transport of ropivacaine metabolites to the mucosal compartment was probably not mediated by Pgp. The Ussing chamber model showed consistent results with those from intestinal microsomes as far as intestinal metabolism is concerned, making it a suitable model for investigations of the interplay of efflux and metabolism.
  •  
4.
  • Berggren, Sofia, et al. (author)
  • Gene and protein expression of P-glycoprotein, MRP1, MRP2 and CYP3A4 in the small and large human intestine
  • 2007
  • In: Molecular Pharmaceutics. - : American Chemical Society (ACS). - 1543-8384 .- 1543-8392. ; 4:2, s. 252-257
  • Journal article (peer-reviewed)abstract
    • The cytochrome P450 3A4 enzyme and the ABC-transporters may affect the first-pass extraction and bioavailability of drugs and metabolites. Conflicting reports can be found in the literature on the expression levels of efflux transporters in human intestine and how they vary along the intestine. The relative levels of mRNA and protein of CYP3A4 and the ABC tranporters Pgp (ABCB1), MRP1 (ABCC1), and MRP2 (ABCC2) were determined using RT-PCR and Western blot for human intestinal tissues (n = 14) from jejunum, ileum and colon. The expression of mRNA for CYP3A4, Pgp, and MRP2 was highest in jejunum and decreased toward more distal regions, whereas MRP1 was equally distributed in all intestinal regions. For CYP3A4, a more significant correlation could be established between mRNA and protein expression than for the ABC transporters. The samples showed considerable interindividual variability, especially at the protein level. The apically located Pgp and MRP2 showed a similar expression pattern along the human intestine as for CYP3A4. The gene expression of MRP1 exhibited a more uniform distribution.
  •  
5.
  •  
6.
  •  
7.
  • Englund, Gunilla, et al. (author)
  • Cytochrome P450 Inhibitory Properties of Common Efflux Transporter Inhibitors
  • 2014
  • In: Drug Metabolism And Disposition. - : American Society for Pharmacology & Experimental Therapeutics (ASPET). - 0090-9556 .- 1521-009X. ; 42:3, s. 441-447
  • Journal article (peer-reviewed)abstract
    • Drug transporter inhibitors are important tools to elucidate the contribution of transporters to drug disposition both in vitro and in vivo. These inhibitors are often unselective and affect several transporters as well as drug metabolizing enzymes, which can make experimental results difficult to interpret with confidence. We therefore tested 14 commonly used P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), and multidrug-resistance associated protein (MRP) inhibitors as inhibitors of cytochrome P450 (P450) enzyme activities using recombinant enzymes. A subset of P-gp and/or CYP3A inhibitors were selected (cyclosporin A, elacridar, ketoconazole, quinidine, reserpine, and tacrolimus) for a comparison of P450 inhibition in human microsomes and hepatocytes. Most P-gp inhibitors showed CYP3A4 inhibition, with potencies often in a similar range as their P-gp inhibition, as well as less potent CYP2C19 inhibition. Other P450 enzymes were not strongly inhibited except a few cases of CYP2D6 inhibition. MRP and BCRP inhibitors showed limited P450 inhibition. Some inhibitors showed less P450 inhibition in human hepatocytes than human liver microsomes, for example, elacridar, probably due to differences in binding, permeability limitations, or active, P-gp mediated efflux of the inhibitor from the hepatocytes. Quinidine was a potent P450 inhibitor in hepatocytes but only showed weak inhibition in microsomes. Quinidine shows an extensive cellular uptake, which may potentiate intracellular P450 inhibition. Elacridar, described as a potent and selective P-gp inhibitor, displayed modest P450 inhibition in this study and is thus a useful model inhibitor to define the role of P-gp in drug disposition without interference with other processes.
  •  
8.
  • Lundquist, Patrik, et al. (author)
  • Functional ATP-Binding Cassette Drug Efflux Transporters in Isolated Human and Rat Hepatocytes Significantly Affect Assessment of Drug Disposition
  • 2014
  • In: Drug Metabolism And Disposition. - : American Society for Pharmacology & Experimental Therapeutics (ASPET). - 0090-9556 .- 1521-009X. ; 42:3, s. 448-458
  • Journal article (peer-reviewed)abstract
    • Freshly isolated hepatocytes are considered the gold standard for in vitro studies of hepatic drug disposition. To ensure a reliable supply of cells, cryopreserved human hepatocytes are often used. ABC-superfamily drug efflux transporters are key elements in hepatic drug disposition. These transporters are often considered lost after isolation of hepatocytes. In the present study, the expression and activity of ABC transporters BCRP, BSEP, P-gp, MRP2, MRP3, and MRP4 in human and rat cryopreserved hepatocytes were investigated. In commercially available human cryopreserved hepatocytes, all drug efflux transporters except human BCRP (hBCRP) exhibited similar expression levels as in fresh liver biopsies. Expression levels of hBCRP were 60% lower in cryopreserved human hepatocytes than in liver tissue, which could lead to, at most, a 2.5-fold reduction in hBCRP-mediated efflux. Fresh rat hepatocytes showed significantly lower levels of rat BCRP compared with liver expression levels; expression levels of other ABC transporters were unchanged. ABC transporters in human cryopreserved cells were localized to the plasma membrane. Functional studies could demonstrate P-gp and BCRP activity in both human cryopreserved and fresh rat hepatocytes. Inhibiting P-gp-mediated efflux by elacridar in in vitro experiments significantly decreased fexofenadine efflux from hepatocytes, resulting in an increase in apparent fexofenadine uptake. The results from the present study clearly indicate that ABC transporter-mediated efflux in freshly isolated as well as cryopreserved rat and human hepatocytes should be taken into account in in vitro experiments used for modeling of drug metabolism and disposition.
  •  
9.
  • Lundquist, Patrik, et al. (author)
  • Prediction of In Vivo Rat Biliary Drug Clearance from an In Vitro Hepatocyte Efflux Model
  • 2014
  • In: Drug Metabolism And Disposition. - : American Society for Pharmacology & Experimental Therapeutics (ASPET). - 0090-9556 .- 1521-009X. ; 42:3, s. 459-468
  • Journal article (peer-reviewed)abstract
    • Well-established techniques are available to predict in vivo hepatic uptake and metabolism from in vitro data, but predictive models for biliary clearance remain elusive. Several studies have verified the expression and activity of ATP-binding cassette (ABC) efflux transporters central to biliary clearance in freshly isolated rat hepatocytes, raising the possibility of predicting biliary clearance from in vitro efflux measurements. In the present study, short-term plated rat hepatocytes were evaluated as a model to predict biliary clearance from in vitro efflux measurements before major changes in transporter expression known to take place in long-term hepatocyte cultures. The short-term cultures were carefully characterized for their uptake and metabolic properties using a set of model compounds. In vitro efflux was studied using digoxin, fexofenadine, napsagatran, and rosuvastatin, representing compounds with over 100-fold differences in efflux rates in vitro and 60-fold difference in measured in vivo biliary clearance. The predicted biliary clearances from short-term plated rat hepatocytes were within 2-fold of measured in vivo values. As in vitro efflux includes both basolateral and canalicular effluxes, pronounced basolateral efflux may introduce errors in predictions for some compounds. In addition, in vitro rat hepatocyte uptake rates corrected for simultaneous efflux predicted rat in vivo hepatic clearance of the biliary cleared compounds with less than 2-fold error. Short-term plated hepatocytes could thus be used to quantify hepatocyte uptake, metabolism, and efflux of compounds and considerably improve the prediction of hepatic clearance, especially for compounds with a large biliary clearance component.
  •  
10.
  • Lundquist, Patrik, et al. (author)
  • The Impact of Solute Carrier (SLC) Drug Uptake Transporter Loss in Human and Rat Cryopreserved Hepatocytes on Clearance Predictions
  • 2014
  • In: Drug Metabolism And Disposition. - : American Society for Pharmacology & Experimental Therapeutics (ASPET). - 0090-9556 .- 1521-009X. ; 42:3, s. 469-480
  • Journal article (peer-reviewed)abstract
    • Cryopreserved hepatocytes are often used as a convenient tool in studies of hepatic drug metabolism and disposition. In this study, the expression and activity of drug transporters in human and rat fresh and cryopreserved hepatocytes was investigated. In human cryopreserved hepatocytes, Western blot analysis indicated that protein expression of the drug uptake transporters [human Na+-taurocholate cotransporting polypeptide (NTCP), human organic anion transporting polypeptides (OATPs), human organic anion transporters, and human organic cation transporters (OCTs)] was considerably reduced compared with liver tissue. In rat cryopreserved cells, the same trend was observed but to a lesser extent. Several rat transporters were reduced as a result of both isolation and cryopreservation procedures. Immunofluorescence showed that a large portion of remaining human OATP1B1 and OATP1B3 transporters were internalized in human cryopreserved hepatocytes. Measuring uptake activity using known substrates of OATPs, OCTs, and NTCP showed decreased activity in cryopreserved as compared with fresh hepatocytes in both species. The reduced uptake in cryopreserved hepatocytes limited the in vitro metabolism of several AstraZeneca compounds. A retrospective analysis of clearance predictions of AstraZeneca compounds suggested systematic lower clearance predicted using metabolic stability data from human cryopreserved hepatocytes compared with human liver microsomes. This observation is consistent with a loss of drug uptake transporters in cryopreserved hepatocytes. In contrast, the predicted metabolic clearance from fresh rat hepatocytes was consistently higher than those predicted from liver microsomes, consistent with retention of uptake transporters. The uptake transporters, which are decreased in cryopreserved hepatocytes, may be rate-limiting for the metabolism of the compounds and thus be one explanation for underpredictions of in vivo metabolic clearance from cryopreserved hepatocytes.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view