SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Hu Chenxi) "

Search: WFRF:(Hu Chenxi)

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Beal, Jacob, et al. (author)
  • Robust estimation of bacterial cell count from optical density
  • 2020
  • In: Communications Biology. - : Springer Science and Business Media LLC. - 2399-3642. ; 3:1
  • Journal article (peer-reviewed)abstract
    • Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data.
  •  
2.
  • Gonzales, Ricardo A., et al. (author)
  • MVnet : automated time-resolved tracking of the mitral valve plane in CMR long-axis cine images with residual neural networks: a multi-center, multi-vendor study
  • 2021
  • In: Journal of Cardiovascular Magnetic Resonance. - : Springer Science and Business Media LLC. - 1097-6647 .- 1532-429X. ; 23, s. 1-15
  • Journal article (peer-reviewed)abstract
    • Background: Mitral annular plane systolic excursion (MAPSE) and left ventricular (LV) early diastolic velocity (e’) are key metrics of systolic and diastolic function, but not often measured by cardiovascular magnetic resonance (CMR). Its derivation is possible with manual, precise annotation of the mitral valve (MV) insertion points along the cardiac cycle in both two and four-chamber long-axis cines, but this process is highly time-consuming, laborious, and prone to errors. A fully automated, consistent, fast, and accurate method for MV plane tracking is lacking. In this study, we propose MVnet, a deep learning approach for MV point localization and tracking capable of deriving such clinical metrics comparable to human expert-level performance, and validated it in a multi-vendor, multi-center clinical population. Methods: The proposed pipeline first performs a coarse MV point annotation in a given cine accurately enough to apply an automated linear transformation task, which standardizes the size, cropping, resolution, and heart orientation, and second, tracks the MV points with high accuracy. The model was trained and evaluated on 38,854 cine images from 703 patients with diverse cardiovascular conditions, scanned on equipment from 3 main vendors, 16 centers, and 7 countries, and manually annotated by 10 observers. Agreement was assessed by the intra-class correlation coefficient (ICC) for both clinical metrics and by the distance error in the MV plane displacement. For inter-observer variability analysis, an additional pair of observers performed manual annotations in a randomly chosen set of 50 patients. Results: MVnet achieved a fast segmentation (<1 s/cine) with excellent ICCs of 0.94 (MAPSE) and 0.93 (LV e’) and a MV plane tracking error of −0.10 ± 0.97 mm. In a similar manner, the inter-observer variability analysis yielded ICCs of 0.95 and 0.89 and a tracking error of −0.15 ± 1.18 mm, respectively. Conclusion: A dual-stage deep learning approach for automated annotation of MV points for systolic and diastolic evaluation in CMR long-axis cine images was developed. The method is able to carefully track these points with high accuracy and in a timely manner. This will improve the feasibility of CMR methods which rely on valve tracking and increase their utility in a clinical setting.
  •  
3.
  • Liu, Hu, et al. (author)
  • Comprehensive treatments of tungsten slags in China: A critical review
  • 2020
  • In: Journal of Environmental Management. - : Elsevier BV. - 0301-4797 .- 1095-8630. ; 270
  • Research review (peer-reviewed)abstract
    • As a critical and strategic metal, tungsten is widely used in the fields of machinery, mining and military industry. With most of the tungsten resources reserves in the world, China is the largest producer and exporter of tungsten. This has resulted in the generation of a huge amount of tungsten slag (slag) stored in China. This slag always contains not only valuable elements, such as tungsten (W), scandium (Sc), tin (Sn), niobium (Nb) and tantalum (Ta), but also toxic elements, such as arsenic (As), lead (Pb), chromium (Cr) and mercury (Hg). Due to a lack of developed technologies, most of these slags cannot be treated safely, which results in a waste of resources and serious environmental and ecological risks. In this review we briefly describe the distribution and proportion of tungsten deposits in China, the tungsten extraction process and the properties of tungsten slag. We also mainly discuss the comprehensive treatments for the valuable and toxic slag, including the amounts of valuable metal elements that can be recovered and the stabilization of toxic elements. These aspects are summarized in a comparison of their advantages and disadvantages. In particular, we focus on the efforts to analyze the relationship between the existing processes and attempts to establish a comprehensive technology to treat tungsten slag and also suggest areas for future research.
  •  
4.
  • Seemann, Felicia, et al. (author)
  • Assessment of diastolic function and atrial remodeling by MRI – validation and correlation with echocardiography and filling pressure
  • 2018
  • In: Physiological Reports. - : Wiley. - 2051-817X. ; 6:17
  • Journal article (peer-reviewed)abstract
    • Atrial fibrosis can be estimated noninvasively by magnetic resonance imaging (MRI) using late gadolinium enhancement (LGE), but diastolic dysfunction is clinically assessed by transthoracic echocardiography (TTE), and rarely by MRI. This study aimed to evaluate well-established diastolic parameters using MRI, and validate them with TTE and left ventricular (LV) filling pressures, and to study the relationship between left atrial (LA) remodeling and parameters of diastolic function. The study retrospectively included 105 patients (53 ± 16 years, 39 females) who underwent 3D LGE MRI between 2012 and 2016. Medical charts were reviewed for the echocardiographic diastolic parameters E, A, and e′ by TTE, and pressure catheterizations. E and A were measured from in-plane phase-contrast cardiac MRI images, and e′ by feature-tracking, and validated with TTE. Interobserver and intraobserver variability was examined. Furthermore, LA volumes, function, and atrial LGE was correlated with diastolic parameters. Evaluation of e′ in MRI had strong agreement with TTE (r = 0.75, P < 0.0001), and low interobserver and intraobserver variability. E and A by TTE showed strong agreement to MRI (r = 0.77, P = 0.001; r = 0.73, P = 0.003, for E and A, respectively). Agreement between E/e′ by TTE and MRI was strong (r = 0.85, P = 0.0004), and E/e′ by TTE correlated moderately to invasive pressures (r = 0.59, P = 0.03). There was a strong relationship between LA LGE and pulmonary capillary wedge pressure (r = 0.81, P = 0.01). In conclusion, diastolic parameters can be measured with good reproducibility by cardiovascular MRI. LA LGE exhibited a strong relationship with pulmonary capillary wedge pressure, an indicator of diastolic function.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view