SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Ignatov A.S.) "

Search: WFRF:(Ignatov A.S.)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Aoyama, T., et al. (author)
  • The anomalous magnetic moment of the muon in the Standard Model
  • 2020
  • In: Physics reports. - : Elsevier BV. - 0370-1573 .- 1873-6270. ; 887, s. 1-166
  • Research review (peer-reviewed)abstract
    • We review the present status of the Standard Model calculation of the anomalous magnetic moment of the muon. This is performed in a perturbative expansion in the fine-structure constant α and is broken down into pure QED, electroweak, and hadronic contributions. The pure QED contribution is by far the largest and has been evaluated up to and including O(α5) with negligible numerical uncertainty. The electroweak contribution is suppressed by (mμ/MW)2 and only shows up at the level of the seventh significant digit. It has been evaluated up to two loops and is known to better than one percent. Hadronic contributions are the most difficult to calculate and are responsible for almost all of the theoretical uncertainty. The leading hadronic contribution appears at O(α2) and is due to hadronic vacuum polarization, whereas at O(α3) the hadronic light-by-light scattering contribution appears. Given the low characteristic scale of this observable, these contributions have to be calculated with nonperturbative methods, in particular, dispersion relations and the lattice approach to QCD. The largest part of this review is dedicated to a detailed account of recent efforts to improve the calculation of these two contributions with either a data-driven, dispersive approach, or a first-principle, lattice-QCD approach. The final result reads aμSM = 116 591 810(43) x 10-11 and is smaller than the Brookhaven measurement by 3.7 σ. The experimental uncertainty will soon be reduced by up to a factor four by the new experiment currently running at Fermilab, and also by the future J-PARC experiment. This and the prospects to further reduce the theoretical uncertainty in the near future - which are also discussed here - make this quantity one of the most promising places to look for evidence of new physics.
  •  
2.
  • Altstadt, S.G., et al. (author)
  • B-13,B-14(n,gamma) via Coulomb Dissociation for Nucleosynthesis towards the r-Process
  • 2014
  • In: Nuclear Data Sheets. - : Elsevier BV. - 1095-9904 .- 0090-3752. ; 120, s. 197-200
  • Conference paper (peer-reviewed)abstract
    • Radioactive beams of 14,15B produced by fragmentation of a primary 40Ar beam were directed onto a Pb target to investigate the neutron breakup within the Coulomb field. The experiment was performed at the LAND/R3B setup. Preliminary results for the Coulomb dissociation cross sections as well as for the astrophysically interesting inverse reactions, 13,14B(n,γ), are presented.
  •  
3.
  • Cortina-Gil, D., et al. (author)
  • CALIFA, a Dedicated Calorimeter for the R3B/FAIR
  • 2014
  • In: Nuclear Data Sheets. - : Elsevier BV. - 1095-9904 .- 0090-3752. ; 120, s. 99-101
  • Journal article (peer-reviewed)abstract
    • The R3B experiment (Reactions with Relativistic Radioactive Beams) at FAIR (Facility for Antiproton and Ion Research) is a versatile setup dedicated to the study of reactions induced by high-energy radioactive beams. It will provide kinematically complete measurements with high efficiency, acceptance and resolution, making possible a broad physics program with rare-isotopes. CALIFA (CALorimeter for In-Flight detection of gamma-rays and high energy charged pArticles), is a complex detector based on scintillation crystals, that will surround the target of the R3B experiment. CALIFA will act as a total absorption gamma-calorimeter and spectrometer, as well as identifier of charged particles from target residues. This versatility is its most challenging requirement, demanding a huge dynamic range, to cover from low energy gamma-rays up to 300 MeV protons. This fact, along with the high-energy of the beams determine the conceptual design of the detector, presented in this paper, together with the technical solutions proposed for its construction.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view