SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Iima Mami) "

Search: WFRF:(Iima Mami)

  • Result 1-9 of 9
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Förnvik, Daniel, et al. (author)
  • The role of breast tomosynthesis in a predominantly dense breast population at a tertiary breast centre : breast density assessment and diagnostic performance in comparison with MRI
  • 2018
  • In: European Radiology. - : Springer Science and Business Media LLC. - 0938-7994 .- 1432-1084. ; 28:8, s. 3194-3203
  • Journal article (peer-reviewed)abstract
    • Objectives: To compare breast density measured on digital breast tomosynthesis (DBT) (BI-RADS-based breast composition and fully-automatic estimation) and magnetic resonance imaging (MRI) (BI-RADS amount of fibroglandular tissue), and to evaluate the diagnostic performance in terms of sensitivity and specificity of DBT and MRI in a predominantly dense breast population. Methods: Between 2015 and 2016, 152 women with 103 breast malignancies, who underwent 3-T breast MRI and DBT within 2 months’ time, were enrolled in this study. Breast composition/fibroglandular tissue and findings on DBT (two readers) and MRI were reported using BI-RADS 5th edition. Digital mammography images were analysed for breast percent density (PD) using the Libra software tool. Results: A majority of women had dense breasts as categorised by breast composition c (heterogeneously dense) (68%) and d (extremely dense) (15%). The mean PD was 44% (range, 18-89%) and the correlation between breast composition and PD was r = 0.6. The diagnostic performance of MRI was significantly higher compared to DBT for one reader as described by the area under the receiver operating characteristic (ROC) curve (p = 0.004) and of borderline significance for the other reader (p = 0.052). Conclusions: MRI had higher diagnostic performance than DBT in a dense breast population in the tertiary setting. Key Points: • MRI had higher diagnostic performance than DBT in a dense breast population• Diagnostic performance of DBT was comparable to MRI in women with fatty breasts• MRI was superior to DBT in preoperative breast cancer size assessment
  •  
3.
  • Honda, Maya, et al. (author)
  • Biomarkers Predictive of Distant Disease-free Survival Derived from Diffusion-weighted Imaging of Breast Cancer
  • 2023
  • In: Magnetic Resonance in Medical Sciences. - : Japanese Society for Magnetic Resonance in Medicine. - 1347-3182 .- 1880-2206. ; 22:4, s. 469-476
  • Journal article (peer-reviewed)abstract
    • Purpose: To investigate whether intravoxel incoherent motion (IVIM) and/or non-Gaussian diffusion parameters are associated with distant disease-free survival (DDFS) in patients with invasive breast cancer. Methods: From May 2013 to March 2015, 101 patients (mean age 60.0, range 28–88) with invasive breast cancer were evaluated prospectively. IVIM parameters (flowing blood volume fraction [fIVIM] and pseudodiffusion coefficient [D*]) and non-Gaussian diffusion parameters (theoretical apparent diffusion coefficient [ADC] at a b value of 0 s/mm2 [ADC0 ] and kurtosis [K]) were estimated using a diffusionweighted imaging series of 16 b values up to 2500 s/mm2. Shifted ADC values (sADC200–1500) and standard ADC values (ADC0–800) were also calculated. The Kaplan–Meier method was used to generate survival analyses for DDFS, which were compared using the log-rank test. Univariable Cox proportional hazards models were used to assess any associations between each parameter and distant metastasis-free survival. Results: The median observation period was 80 months (range, 35–92 months). Among the 101 patients, 12 (11.9%) developed distant metastasis, with a median time to metastasis of 79 months (range, 10–92 months). Kaplan–Meier analysis showed that DDFS was significantly shorter in patients with K > 0.98 than in those with K ≤ 0.98 (P = 0.04). Cox regression analysis showed a marginal statistical association between K and distant metastasis-free survival (P = 0.05). Conclusion: Non-Gaussian diffusion may be associated with prognosis in invasive breast cancer. A higher K may be a marker to help identify patients at an elevated risk of distant metastasis, which could guide subsequent treatment.
  •  
4.
  • Honda, Maya, et al. (author)
  • Visual Evaluation of Ultrafast MRI in the Assessment of Residual Breast Cancer after Neoadjuvant Systemic Therapy : A Preliminary Study Association with Subtype
  • 2022
  • In: Tomography. - : MDPI AG. - 2379-1381 .- 2379-139X. ; 8:3, s. 1522-1533
  • Journal article (peer-reviewed)abstract
    • The purpose of this study was to investigate the diagnostic performance of ultrafast DCE (UF-DCE) MRI after the completion of neoadjuvant systemic therapy (NST) in breast cancer. In this study, MR examinations of 55 post-NST breast cancers were retrospectively analyzed. Residual tumor sizes were measured in the 20th phase of UF-DCE MRI, early and delayed phases of conventional DCE MRI, and high spatial-resolution CE MRI (UF, early, delayed, and HR, respectively). The diagnostic performance for the detection of residual invasive cancer was calculated by ROC analysis. The size difference between MRI and pathological findings was analyzed using the Wilcoxon signed-rank test with the Bonferroni correction. The overall AUC was highest for UF (0.86 and 0.88 for readers 1 and 2, respectively). The difference in imaging and pathological sizes for UF (5.7 ± 8.2 mm) was significantly smaller than those for early, delayed, and HR (p < 0.01). For luminal subtype breast cancer, the size difference was significantly smaller for UF and early than for delayed (p < 0.01). UF-DCE MRI demonstrated higher AUC and specificity for the more accurate detection of residual cancer and the visualization of tumor extent than conventional DCE MRI.
  •  
5.
  • Kataoka, Masako, et al. (author)
  • Ultrafast Dynamic Contrast-Enhanced MRI of the Breast : From Theory to Practice
  • In: Journal of Magnetic Resonance Imaging. - 1053-1807.
  • Research review (peer-reviewed)abstract
    • The development of ultrafast dynamic contrast-enhanced (UF-DCE) MRI has occurred in tandem with fast MRI scan techniques, particularly view-sharing and compressed sensing. Understanding the strengths of each technique and optimizing the relevant parameters are essential to their implementation. UF-DCE MRI has now shifted from research protocols to becoming a part of clinical scan protocols for breast cancer. UF-DCE MRI is expected to compensate for the low specificity of abbreviated MRI by adding kinetic information from the upslope of the time-intensity curve. Because kinetic information from UF-DCE MRI is obtained from the shape and timing of the initial upslope, various new kinetic parameters have been proposed. These parameters may be associated with receptor status or prognostic markers for breast cancer. In addition to the diagnosis of malignant lesions, more emphasis has been placed on predicting and evaluating treatment response because hyper-vascularity is linked to the aggressiveness of breast cancers. In clinical practice, it is important to note that breast lesion images obtained from UF-DCE MRI are slightly different from those obtained by conventional DCE MRI in terms of morphology. A major benefit of using UF-DCE MRI is avoidance of the marked or moderate background parenchymal enhancement (BPE) that can obscure the target enhancing lesions. BPE is less prominent in the earlier phases of UF-DCE MRI, which offers better lesion-to-noise contrast. The excellent contrast of early-enhancing vessels provides a key to understanding the detailed pathological structure of tumor-associated vessels. UF-DCE MRI is normally accompanied by a large volume of image data for which automated/artificial intelligence-based processing is expected to be useful. In this review, both the theoretical and practical aspects of UF-DCE MRI are summarized. Evidence Level: 5. Technical Efficacy: Stage 2.
  •  
6.
  • Kataoka, Masako, et al. (author)
  • Ultrafast Dynamic Contrast-enhanced MRI of the Breast : How Is It Used?
  • 2022
  • In: Magnetic resonance in medical sciences : MRMS : an official journal of Japan Society of Magnetic Resonance in Medicine. - : Japanese Society for Magnetic Resonance in Medicine. ; 21:1, s. 83-94
  • Research review (peer-reviewed)abstract
    • Ultrafast dynamic contrast-enhanced (UF-DCE) MRI is a new approach to capture kinetic information in the very early post-contrast period with high temporal resolution while keeping reasonable spatial resolution. The detailed timing and shape of the upslope in the time-intensity curve are analyzed. New kinetic parameters obtained from UF-DCE MRI are useful in differentiating malignant from benign lesions and in evaluating prognostic markers of the breast cancers. Clinically, UF-DCE MRI contributes in identifying hypervascular lesions when the background parenchymal enhancement (BPE) is marked on conventional dynamic MRI. This review starts with the technical aspect of accelerated acquisition. Practical aspects of UF-DCE MRI include identification of target hypervascular lesions from marked BPE and diagnosis of malignant and benign lesions based on new kinetic parameters derived from UF-DCE MRI: maximum slope (MS), time to enhance (TTE), bolus arrival time (BAT), time interval between arterial and venous visualization (AVI), and empirical mathematical model (EMM). The parameters derived from UF-DCE MRI are compared in terms of their diagnostic performance and association with prognostic markers. Pitfalls of UF-DCE MRI in the clinical situation are also covered. Since UF-DCE MRI is an evolving technique, future prospects of UF-DCE MRI are discussed in detail by citing recent evidence. The topic covers prediction of treatment response, multiparametric approach using DWI-derived parameters, evaluation of tumor-related vessels, and application of artificial intelligence for UF-DCE MRI. Along with comprehensive literature review, illustrative clinical cases are used to understand the value of UF-DCE MRI.
  •  
7.
  • Ohashi, Akane, et al. (author)
  • A multiparametric approach to predict triple-negative breast cancer including parameters derived from ultrafast dynamic contrast-enhanced MRI
  • 2023
  • In: European Radiology. - 0938-7994. ; 33:11, s. 8132-8141
  • Journal article (peer-reviewed)abstract
    • Objective: Triple-negative breast cancer (TNBC) is a highly proliferative breast cancer subtype. We aimed to identify TNBC among invasive cancers presenting as masses using maximum slope (MS) and time to enhancement (TTE) measured on ultrafast (UF) DCE-MRI, ADC measured on DWI, and rim enhancement on UF DCE-MRI and early-phase DCE-MRI. Methods: This retrospective single-center study, between December 2015 and May 2020, included patients with breast cancer presenting as masses. Early-phase DCE-MRI was performed immediately after UF DCE-MRI. Interrater agreements were evaluated using the intraclass correlation coefficient (ICC) and Cohen's kappa. Univariate and multivariate logistic regression analyses of the MRI parameters, lesion size, and patient age were performed to predict TNBC and create a prediction model. The programmed death-ligand 1 (PD-L1) expression statuses of the patients with TNBCs were also evaluated. Results: In total, 187 women (mean age, 58 years ± 12.9 [standard deviation]) with 191 lesions (33 TNBCs) were evaluated. The ICC for MS, TTE, ADC, and lesion size were 0.95, 0.97, 0.83, and 0.99, respectively. The kappa values of rim enhancements on UF and early-phase DCE-MRI were 0.88 and 0.84, respectively. MS on UF DCE-MRI and rim enhancement on early-phase DCE-MRI remained significant parameters after multivariate analyses. The prediction model created using these significant parameters yielded an area under the curve of 0.74 (95% CI, 0.65, 0.84). The PD-L1-expressing TNBCs tended to have higher rim enhancement rates than the non-PD-L1-expressing TNBCs. Conclusion: A multiparametric model using UF and early-phase DCE-MRI parameters may be a potential imaging biomarker to identify TNBCs. Clinical relevance statement: Prediction of TNBC or non-TNBC at an early point of diagnosis is crucial for appropriate management. This study offers the potential of UF and early-phase DCE-MRI to offer a solution to this clinical issue. Key Points: • It is crucial to predict TNBC at an early clinical period. • Parameters on UF DCE-MRI and early-phase conventional DCE-MRI help in predicting TNBC. • Prediction of TNBC by MRI may be useful in determining appropriate clinical management.
  •  
8.
  • Ohashi, Akane, et al. (author)
  • Comparison of Ultrafast Dynamic Contrast-Enhanced (DCE) MRI with Conventional DCE MRI in the Morphological Assessment of Malignant Breast Lesions
  • 2023
  • In: Diagnostics. - : MDPI AG. - 2075-4418. ; 13:6
  • Journal article (peer-reviewed)abstract
    • Ultrafast (UF) dynamic contrast-enhanced (DCE)-MRI offers the potential for a faster and, therefore, less expensive examination of breast lesions; however, there are no reports that have evaluated whether UF DCE-MRI can be used the same as conventional DCE-MRI in the reading of morphological information. This study evaluated the agreement in morphological information obtained from malignant breast mass lesions between UF DCE-MRI and conventional DCE-MRI. UF DCE-MRI data were obtained over the first 60 s post-contrast injection, followed by the conventional DCE images. Two readers evaluated the size and morphology of the lesions in the final phase of the UF DCE-MRI and the early phase of the conventional DCE-MRI. Inter-method agreement in morphological information was evaluated for the two readers using the intraclass correlation coefficient for size, and the kappa statistics for the morphological descriptors. Differences in the proportion of each descriptor were examined using Fisher’s test of independence. Most inter-method agreements were higher than substantial. UF DCE-MRI showed a circumscribed margin and homogeneous enhancement more often than conventional imaging. However, the percentages of readings showing the same morphology assessment between the UF DCE-MRI and conventional DCE-MRI were 71.2% (136/191) for Reader 1 and 69.1% (132/191) for Reader 2. We conclude that UF DCE-MRI may replace conventional DCE-MRI to evaluate the morphological information of malignant breast mass lesions.
  •  
9.
  • Ohashi, Akane, et al. (author)
  • Prediction of Ki-67 expression of breast cancer with a multiparametric model using MRI parameters from ultrafast DCE-MRI and DWI
  • 2022
  • In: 16th International Workshop on Breast Imaging, IWBI 2022. - : SPIE. - 1996-756X .- 0277-786X. - 9781510655843 ; 12286
  • Conference paper (peer-reviewed)abstract
    • The purpose of this study is to investigate the prediction of Ki-67 expression of breast cancers using MRI parameters from ultrafast (UF) DCE-MRI, DWI, T2WI, and the lesion size. Breast MRI was performed with a 3T scanner using dedicated breast coils. UF DCE-MRI was obtained using Compressed Sensing-VIBE (prototype sequence). As a kinetic parameter of UF DCE-MRI, maximum slope (MS) was defined as percentage relative enhancement (%/s), and time to enhance (TTE) was defined as the time interval between the aorta and lesion enhancement. The apparent diffusion coefficient (ADC) was derived from DWI. Two radiologists measured each MR parameter, and inter-rater agreement was evaluated. Univariate and multivariate logistic regression analyses were perfomed to predict low Ki-67 (< 14%) and high Ki-67 (≥ 14%) expression using MS, TTE, ADC, T2-signal intensity (SI), and lesion size. The significant parameters (p-values of < 0.05) were selected for the prediction model, and the diagnostic performance of the model was evaluated using ROC curve analysis. A total of 191 invasive carcinomas defined as mass lesions were included (72 low Ki-67/ 119 high Ki-67 lesions). The inter-rater agreements of all parameters were excellent. After univariate and multivariate logistic regression analysis, ADC and lesion size remained significant parameters. Using these significant parameters, the multi-parametric prediction model yielded an AUC of 0.77 (95%CI of 0.70-0.84) (sensitivity 72.3%, specificity 76.4%, and PPV 83.5%, and NPV 62.5%). DWI parameter (ADC) may be more valuable than UF DCE-MRI parameters (MS, TTE) to predict high Ki-67 in mass-shaped invasive breast carcinoma.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-9 of 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view