SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Illies C) "

Search: WFRF:(Illies C)

  • Result 1-10 of 15
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  • Barker, CJ, et al. (author)
  • HPLC separation of inositol polyphosphates
  • 2010
  • In: Methods in molecular biology (Clifton, N.J.). - Totowa, NJ : Humana Press. - 1940-6029. ; 645, s. 21-46
  • Journal article (peer-reviewed)
  •  
6.
  •  
7.
  • Botusan, I. R., et al. (author)
  • Deficiency of liver-derived insulin-like growth factor-I (IGF-I) does not interfere with the skin wound healing rate
  • 2018
  • In: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 13:3
  • Journal article (peer-reviewed)abstract
    • Objective: IGF-I is a growth factor, which is expressed in virtually all tissues. The circulating IGF-I is however derived mainly from the liver. IGF-I promotes wound healing and its levels are decreased in wounds with low regenerative potential such as diabetic wounds. However, the contribution of circulating IGF-I to wound healing is unknown. Here we investigated the role of systemic IGF-I on wound healing rate in mice with deficiency of liver-derived IGF-I (LI-IGF-I-/- mice) during normal (normoglycemic) and impaired wound healing (diabetes). Methods: LI-IGF-I-/- mice with complete inactivation of the IGF-I gene in the hepatocytes were generated using the Cre/loxP recombination system. This resulted in a 75% reduction of circulating IGF-I. Diabetes was induced with streptozocin in both LI-IGF-I-/- and control mice. Wounds were made on the dorsum of the mice, and the wound healing rate and histology were evaluated. Serum IGF-I and GH were measured by RIA and ELISA respectively. The expression of IGF-I, IGF-II and the IGF-I receptor in the skin were evaluated by qRT-PCR. The local IGF-I protein expression in different cell types of the wounds during wound healing process was analyzed using immunohistochemistry. Results: The wound healing rate was similar in LI-IGF-I-/- mice to that in controls. Diabetes significantly delayed the wound healing rate in both LI-IGF-I-/- and control mice. However, no significant difference was observed between diabetic animals with normal or reduced hepatic IGF-I production. The gene expression of IGF-I, IGF-II and IGF-I receptor in skin was not different between any group of animals tested. Local IGF-I levels in the wounds were similar between of LI-IGF-I-/- and WT mice although a transient reduction of IGF-I expression in leukocytes in the wounds of LI-IGF-I-/- was observed seven days post wounding. Conclusion: Deficiency in the liver-derived IGF-I does not affect wound healing in mice, neither in normo-glycemic conditions nor in diabetes.
  •  
8.
  • Li, LS, et al. (author)
  • Defects in β-cell Ca2+ dynamics in age-induced diabetes
  • 2014
  • In: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 63:12, s. 4100-4114
  • Journal article (peer-reviewed)abstract
    • Little is known about the molecular mechanisms underlying age-dependent deterioration in β-cell function. We now demonstrate that age-dependent impairment in insulin release, and thereby glucose homeostasis, is associated with subtle changes in Ca2+ dynamics in mouse β-cells. We show that these changes are likely to be accounted for by impaired mitochondrial function and to involve phospholipase C/inositol 1,4,5-trisphosphate–mediated Ca2+ mobilization from intracellular stores as well as decreased β-cell Ca2+ influx over the plasma membrane. We use three mouse models, namely, a premature aging phenotype, a mature aging phenotype, and an aging-resistant phenotype. Premature aging is studied in a genetically modified mouse model with an age-dependent accumulation of mitochondrial DNA mutations. Mature aging is studied in the C57BL/6 mouse, whereas the 129 mouse represents a model that is more resistant to age-induced deterioration. Our data suggest that aging is associated with a progressive decline in β-cell mitochondrial function that negatively impacts on the fine tuning of Ca2+ dynamics. This is conceptually important since it emphasizes that even relatively modest changes in β-cell signal transduction over time lead to compromised insulin release and a diabetic phenotype.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view