SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Jönsson Johan 1989 ) "

Search: WFRF:(Jönsson Johan 1989 )

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Ekholm, Marcus, et al. (author)
  • Assessing the SCAN functional for itinerant electron ferromagnets
  • 2018
  • In: Physical Review B. - : AMER PHYSICAL SOC. - 2469-9950 .- 2469-9969. ; 98:9
  • Journal article (peer-reviewed)abstract
    • Density functional theory is a standard model for condensed-matter theory and computational material science. The accuracy of density functional theory is limited by the accuracy of the employed approximation to the exchange-correlation functional. Recently, the so-called strongly constrained appropriately normed (SCAN) [Sun, Ruzsinszky, and Perdew, Phys. Rev. Lett. 115, 036402 (2015)] functional has received a lot of attention due to promising results for covalent, metallic, ionic, as well as hydrogen- and van der Waals-bonded systems alike. In this work, we focus on assessing the performance of the SCAN functional for itinerant magnets by calculating basic structural and magnetic properties of the transition metals Fe, Co, and Ni. We find that although structural properties of bcc-Fe seem to be in good agreement with experiment, SCAN performs worse than standard local and semilocal functionals for fcc-Ni and hcp-Co. In all three cases, the magnetic moment is significantly overestimated by SCAN, and the 3d states are shifted to lower energies, as compared to experiments.
  •  
2.
  • Jönsson, Johan, 1989- (author)
  • Electronic transitions and correlation effects : From pure elements to complex materials
  • 2020
  • Doctoral thesis (other academic/artistic)abstract
    • Macroscopic properties of real materials, such as conductivity, magneticproperties, crystal structure parameters, etc. are closely related or evendetermined by the configuration of their electrons, characterized by electronicstructure. By changing the conditions, e.g, pressure, temperature, magnetic/electric field, chemical doping, etc. one can modify the electronic structure ofsolids and therefore induce a phase transition(s) between different electronic andmagnetic states. One famous example is a Mott metal-to-insulator phase transition,at which a material undergoes a significant, often many orders of magnitude, changeof conductivity caused by the interplay between itineracy and localization of thecarriers.Electronic topological transitions (ETT) involvechanges in the topology of a metal's Fermi surface. This thesis investigates theeffect of such electronic transitions in various materials, ranging from pureelements to complex compounds.To describe the interplay between electronic transitionsand properties of real materials,different state-of-the-art computational methods are used. The densityfunctional theory(DFT), as well as the DFT + U method, is used to calculatestructural properties. The validity of recently introduced exchange-correlationfunctionals, such as the strongly constrained and appropriately normed (SCAN)functional, is also assessed for magnetic elements. In order toinclude dynamical effects of electron interactions we use the DFT + dynamical meanfield theory (DFT + DMFT) method.Experiments in hcp-Os have reported peculiarities in the ratio betweenlattice parameters at high pressure. Previous calculations have suggested these transitions maybe related to ETTs and even crossings of core levels at ultra high pressure. Inthis thesis it is shownthat the crossing of core levels is a general feature of heavy transitionmetals. Experiments have therefore been performed to look for indications ofthis transition in Ir using X-ray absorption spectroscopy. In NiO, strongrepulsion between electrons leads to a Mott insulating state at ambientconditions. It has long been predicted that high pressure will lead to aninsulator-to-metal transition. This has been suggested to be accompanied by aloss of magnetic order, and a structural phase transition. In collaboration withexperimentalists we look for thistransition by investigating the X-ray absorption spectra as well as themagnetic hyperfine field. We find no evidence of a Mott transition up to 280GPa. In the Mott insulator TiPO4, application of external pressure has beensuggested to lead to a spin-Peierls transition at room temperature. Weinvestigate the dimerisation and the magnetic structure of TiPO4 at high pressure.As pressure is increased further, TiPO4 goes through a metal to insulatortransition before an eventual crystallographic phase transition. Remarkably, thenew high pressure phases are found to be insulators; the Mott insulating stateis restored.MAX phases are layered materials that combinemetallic and ceramic properties and feature layers of M-metal and X-C or N atomsinterconnected by A-group atoms. Magnetic MAX-phases with their low dimensionalmagnetism are promising candidates for applications in e.g., spintronics.The validity of various theoretical approaches are discussed in connection tothe magnetic MAX-phase Mn2GaC. Using DFT and DFT + DMFT we consider the hightemperature paramagnetic state, and whether the magnetic moments are formed bylocalized or itinerant electrons.
  •  
3.
  • Sanchez Klose, Felix, 1989, et al. (author)
  • The Pseudomonas aeruginosa lectin LecB modulates intracellular reactive oxygen species production in human neutrophils
  • 2024
  • In: European Journal of Immunology. - 0014-2980 .- 1521-4141. ; 54:2
  • Journal article (peer-reviewed)abstract
    • Pseudomonas aeruginosa is a Gram-negative bacterium and an opportunistic pathogen ubiquitously present throughout nature. LecB, a fucose-, and mannose-binding lectin, is a prominent virulence factor of P. aeruginosa, which can be expressed on the bacterial surface but also be secreted. However, the LecB interaction with human immune cells remains to be characterized. Neutrophils comprise the first line of defense against infections and their production of reactive oxygen species (ROS) and release of extracellular traps (NETs) are critical antimicrobial mechanisms. When profiling the neutrophil glycome we found several glycoconjugates on granule and plasma membranes that could potentially act as LecB receptors. In line with this, we here show that soluble LecB can activate primed neutrophils to produce high levels of intracellular ROS (icROS), an effect that was inhibited by methyl fucoside. On the other hand, soluble LecB inhibits P. aeruginosa-induced icROS production. In support of that, during phagocytosis of wild-type and LecB-deficient P. aeruginosa, bacteria with LecB induced less icROS production as compared with bacteria lacking the lectin. Hence, LecB can either induce or inhibit icROS production in neutrophils depending on the circumstances, demonstrating a novel and potential role for LecB as an immunomodulator of neutrophil functional responses.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view