SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Jain Mohit) "

Search: WFRF:(Jain Mohit)

  • Result 1-6 of 6
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Jain, Mohit, et al. (author)
  • Methodologies for Effective Demand Response Messaging
  • 2016
  • In: 2015 IEEE International Conference on Smart Grid Communications (SmartGridComm). - Piscataway, NJ : IEEE Communications Society. - 9781467382892 ; , s. 453-458
  • Conference paper (peer-reviewed)abstract
    • Demand Response (DR) is considered an effective mechanism by utilities worldwide to address demand supply mismatch and reduce energy consumption, peak load and emissions. Consumer participation is central to realize the full potential offered by DR programs. The communication between a utility company and consumers participating in DR is through DR messages. However, despite the importance of DR messages in the context of residential DR programs, only a limited number of relevant experimental studies have been reported in literature so far. To address this gap, in this paper, we report findings from 6-month long DR field trials involving residential participants in Lulea, Sweden. The trials specifically focus on four aspects related to DR messages - notification mechanism, message type, associated incentive, and participation feedback. The primary outcome of these trials is a set of guidelines and recommendations for design of effective DR programs.
  •  
2.
  • Lensink, Marc F., et al. (author)
  • Impact of AlphaFold on structure prediction of protein complexes: The CASP15-CAPRI experiment
  • 2023
  • In: Proteins. - : WILEY. - 0887-3585 .- 1097-0134.
  • Journal article (peer-reviewed)abstract
    • We present the results for CAPRI Round 54, the 5th joint CASP-CAPRI protein assembly prediction challenge. The Round offered 37 targets, including 14 homodimers, 3 homo-trimers, 13 heterodimers including 3 antibody-antigen complexes, and 7 large assemblies. On average similar to 70 CASP and CAPRI predictor groups, including more than 20 automatics servers, submitted models for each target. A total of 21 941 models submitted by these groups and by 15 CAPRI scorer groups were evaluated using the CAPRI model quality measures and the DockQ score consolidating these measures. The prediction performance was quantified by a weighted score based on the number of models of acceptable quality or higher submitted by each group among their five best models. Results show substantial progress achieved across a significant fraction of the 60+ participating groups. High-quality models were produced for about 40% of the targets compared to 8% two years earlier. This remarkable improvement is due to the wide use of the AlphaFold2 and AlphaFold2-Multimer software and the confidence metrics they provide. Notably, expanded sampling of candidate solutions by manipulating these deep learning inference engines, enriching multiple sequence alignments, or integration of advanced modeling tools, enabled top performing groups to exceed the performance of a standard AlphaFold2-Multimer version used as a yard stick. This notwithstanding, performance remained poor for complexes with antibodies and nanobodies, where evolutionary relationships between the binding partners are lacking, and for complexes featuring conformational flexibility, clearly indicating that the prediction of protein complexes remains a challenging problem.
  •  
3.
  • Nilsson, Roland, et al. (author)
  • Metabolic enzyme expression highlights a key role for MTHFD2 and the mitochondrial folate pathway in cancer
  • 2014
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 5, s. 3128-
  • Journal article (peer-reviewed)abstract
    • Metabolic remodeling is now widely regarded as a hallmark of cancer, but it is not clear whether individual metabolic strategies are frequently exploited by many tumours. Here we compare messenger RNA profiles of 1,454 metabolic enzymes across 1,981 tumours spanning 19 cancer types to identify enzymes that are consistently differentially expressed. Our meta-analysis recovers established targets of some of the most widely used chemotherapeutics, including dihydrofolate reductase, thymidylate synthase and ribonucleotide reductase, while also spotlighting new enzymes, such as the mitochondrial proline biosynthetic enzyme PYCR1. The highest scoring pathway is mitochondrial one-carbon metabolism and is centred on MTHFD2. MTHFD2 RNA and protein are markedly elevated in many cancers and correlated with poor survival in breast cancer. MTHFD2 is expressed in the developing embryo, but is absent in most healthy adult tissues, even those that are proliferating. Our study highlights the importance of mitochondrial compartmentalization of one-carbon metabolism in cancer and raises important therapeutic hypotheses.
  •  
4.
  • Schober, Florian A., et al. (author)
  • The one-carbon pool controls mitochondrial energy metabolism via complex I and iron-sulfur clusters
  • 2021
  • In: Science Advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 7:8
  • Journal article (peer-reviewed)abstract
    • Induction of the one-carbon cycle is an early hallmark of mitochondrial dysfunction and cancer metabolism. Vital intermediary steps are localized to mitochondria, but it remains unclear how one-carbon availability connects to mitochondrial function. Here, we show that the one-carbon metabolite and methyl group donor S-adenosylmethionine (SAM) is pivotal for energy metabolism. A gradual decline in mitochondrial SAM (mitoSAM) causes hierarchical defects in fly and mouse, comprising loss of mitoSAM-dependent metabolites and impaired assembly of the oxidative phosphorylation system. Complex I stability and iron-sulfur cluster biosynthesis are directly controlled by mitoSAM levels, while other protein targets are predominantly methylated outside of the organelle before import. The mitoSAM pool follows its cytosolic production, establishing mitochondria as responsive receivers of one-carbon units. Thus, we demonstrate that cellular methylation potential is required for energy metabolism, with direct relevance for pathophysiology, aging, and cancer.
  •  
5.
  • Sheppard, Nina Gustafsson, et al. (author)
  • The folate-coupled enzyme MTHFD2 is a nuclear protein and promotes cell proliferation
  • 2015
  • In: Scientific Reports. - : Springer Nature. - 2045-2322. ; 5
  • Journal article (peer-reviewed)abstract
    • Folate metabolism is central to cell proliferation and a target of commonly used cancer chemotherapeutics. In particular, the mitochondrial folate-coupled metabolism is thought to be important for proliferating cancer cells. The enzyme MTHFD2 in this pathway is highly expressed in human tumors and broadly required for survival of cancer cells. Although the enzymatic activity of the MTHFD2 protein is well understood, little is known about its larger role in cancer cell biology. We here report that MTHFD2 is co-expressed with two distinct gene sets, representing amino acid metabolism and cell proliferation, respectively. Consistent with a role for MTHFD2 in cell proliferation, MTHFD2 expression was repressed in cells rendered quiescent by deprivation of growth signals (serum) and rapidly re-induced by serum stimulation. Overexpression of MTHFD2 alone was sufficient to promote cell proliferation independent of its dehydrogenase activity, even during growth restriction. In addition to its known mitochondrial localization, we found MTHFD2 to have a nuclear localization and co-localize with DNA replication sites. These findings suggest a previously unknown role for MTHFD2 in cancer cell proliferation, adding to its known function in mitochondrial folate metabolism.
  •  
6.
  • Sundqvist, Nicolas, et al. (author)
  • Validation-based model selection for C-13 metabolic flux analysis with uncertain measurement errors
  • 2022
  • In: PloS Computational Biology. - : Public Library of Science. - 1553-734X .- 1553-7358. ; 18:4
  • Journal article (peer-reviewed)abstract
    • Accurate measurements of metabolic fluxes in living cells are central to metabolism research and metabolic engineering. The gold standard method is model-based metabolic flux analysis (MFA), where fluxes are estimated indirectly from mass isotopomer data with the use of a mathematical model of the metabolic network. A critical step in MFA is model selection: choosing what compartments, metabolites, and reactions to include in the metabolic network model. Model selection is often done informally during the modelling process, based on the same data that is used for model fitting (estimation data). This can lead to either overly complex models (overfitting) or too simple ones (underfitting), in both cases resulting in poor flux estimates. Here, we propose a method for model selection based on independent validation data. We demonstrate in simulation studies that this method consistently chooses the correct model in a way that is independent on errors in measurement uncertainty. This independence is beneficial, since estimating the true magnitude of these errors can be difficult. In contrast, commonly used model selection methods based on the chi(2)-test choose different model structures depending on the believed measurement uncertainty; this can lead to errors in flux estimates, especially when the magnitude of the error is substantially off. We present a new approach for quantification of prediction uncertainty of mass isotopomer distributions in other labelling experiments, to check for problems with too much or too little novelty in the validation data. Finally, in an isotope tracing study on human mammary epithelial cells, the validation-based model selection method identified pyruvate carboxylase as a key model component. Our results argue that validation-based model selection should be an integral part of MFA model development.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-6 of 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view