SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Jammet Mathilde) "

Search: WFRF:(Jammet Mathilde)

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Jammet, Mathilde, et al. (author)
  • Large methane emissions from a subarctic lake during spring thaw : Mechanisms and landscape significance
  • 2015
  • In: Journal of Geophysical Research - Biogeosciences. - 2169-8953 .- 2169-8961. ; 120:11, s. 2289-2305
  • Journal article (peer-reviewed)abstract
    • The ice-cover season and subsequent spring thaw are thought to be of particular importance for the biogeochemical cycle of northern lakes and wetlands. Yet the magnitude of their methane emissions during an entire cold season is uncertain due to scarce measurements. While wetlands are known to be the highest natural emitters of methane, emissions from northern lakes are an uncertain component of terrestrial carbon budgets. To evaluate the importance of methane emissions from a subarctic lake during winter and spring, surface methane fluxes were recorded with the eddy covariance method in a subarctic fen-type wetland and in an adjacent shallow lake, from freezeup to complete ice out. The fen was a steady emitter of methane throughout winter. While no detectable flux was observed from the ice-covered lake surface during winter, it was the largest methane source of the landscape in spring, with a cumulative release 1.7-fold higher than at the fen, accounting for 53% of annual lake emissions. The high temporal resolution of the measurements allowed making a direct link between breakdown of the temperature stratification after ice breakup and the highest release of methane from the lake surface. A sediment upwelling at the end of the thaw season likely contributed to these emissions. We suggest that, unlike wetlands, shallow seasonally ice-covered lakes can have their highest methane emission potential in the cold season, likely dominating the spring methane release of subarctic landscapes with high lake coverage.
  •  
2.
  • Jammet, Mathilde, et al. (author)
  • Year-round CH4 and CO2 flux dynamics in two contrasting freshwater ecosystems of the subarctic
  • 2017
  • In: Biogeosciences. - : Copernicus GmbH. - 1726-4170 .- 1726-4189. ; 14:22, s. 5189-5216
  • Journal article (peer-reviewed)abstract
    • Lakes and wetlands, common ecosystems of the high northern latitudes, exchange large amounts of the climate-forcing gases methane (CH4) and carbon dioxide (CO2) with the atmosphere. The magnitudes of these fluxes and the processes driving them are still uncertain, particularly for subarctic and Arctic lakes where direct measurements of CH4 and CO2 emissions are often of low temporal resolution and are rarely sustained throughout the entire year. Using the eddy covariance method, we measured surface-atmosphere exchange of CH4 and CO2 during 2.5 years in a thawed fen and a shallow lake of a subarctic peatland complex. Gas exchange at the fen exhibited the expected seasonality of a subarctic wetland with maximum CH4 emissions and CO2 uptake in summer, as well as low but continuous emissions of CH4 and CO2 throughout the snow-covered winter. The seasonality of lake fluxes differed, with maximum CO2 and CH4 flux rates recorded at spring thaw. During the ice-free seasons, we could identify surface CH4 emissions as mostly ebullition events with a seasonal trend in the magnitude of the release, while a net CO2 flux indicated photosynthetic activity. We found correlations between surface CH4 emissions and surface sediment temperature, as well as between diel CO2 uptake and diel solar input. During spring, the breakdown of thermal stratification following ice thaw triggered the degassing of both CH4 and CO2. This spring burst was observed in 2 consecutive years for both gases, with a large inter-annual variability in the magnitude of the CH4 degassing. On the annual scale, spring emissions converted the lake from a small CO2 sink to a CO2 source: 80% of total annual carbon emissions from the lake were emitted as CO2. The annual total carbon exchange per unit area was highest at the fen, which was an annual sink of carbon with respect to the atmosphere. Continuous respiration during the winter partly counteracted the fen summer sink by accounting for, as both CH4 and CO2, 33% of annual carbon exchange. Our study shows (1) the importance of overturn periods (spring or fall) for the annual CH4 and CO2 emissions of northern lakes, (2) the significance of lakes as atmospheric carbon sources in subarctic landscapes while fens can be a strong carbon sink, and (3) the potential for ecosystem-scale eddy covariance measurements to improve the understanding of short-term processes driving lake-atmosphere exchange of CH4 and CO2.
  •  
3.
  • Jansen, Joachim, et al. (author)
  • Climate‐Sensitive Controls on Large Spring Emissions of CH4 and CO2 From Northern Lakes
  • 2019
  • In: Journal of Geophysical Research - Biogeosciences. - 2169-8953 .- 2169-8961. ; 124:7, s. 2379-2399
  • Journal article (peer-reviewed)abstract
    • Northern lakes are important sources of the climate forcing trace gases methane (CH4) and carbon dioxide (CO2). A substantial portion of lakes' annual emissions can take place immediately after ice melt in spring. The drivers of these fluxes are neither well constrained nor fully understood. We present a detailed carbon gas budget for three subarctic lakes, using 6 years of eddy covariance and 9 years of manual flux measurements. We combine measurements of temperature, dissolved oxygen, and CH4 stable isotopologues to quantify functional relationships between carbon gas production and conversion, energy inputs, and the redox regime. Spring emissions were regulated by the availability of oxygen in winter, rather than temperature as during ice‐free conditions. Under‐ice storage increased predictably with ice‐cover duration, and CH4 accumulation rates (25 ± 2 mg CH4‐C·m−2·day−1) exceeded summer emissions (19 ± 1 mg CH4‐C·m−2·day−1). The seasonally ice‐covered lakes emitted 26–59% of the annual CH4 flux and 15–30% of the annual CO2 flux at ice‐off. Reduced spring emissions were associated with winter snowmelt events, which can transport water downstream and oxygenate the water column. Stable isotopes indicate that 64–96% of accumulated CH4 escaped oxidation, implying that a considerable portion of the dissolved gases produced over winter may evade to the atmosphere.
  •  
4.
  • Zhang, Wenxin, et al. (author)
  • Model-data fusion to assess year-round CO2 fluxes for an arctic heath ecosystem in West Greenland (69°N)
  • 2019
  • In: Agricultural and Forest Meteorology. - : Elsevier BV. - 1873-2240 .- 0168-1923. ; 272-273, s. 176-186
  • Journal article (peer-reviewed)abstract
    • Quantifying net CO2 exchange (NEE) of arctic terrestrial ecosystems in response to changes in climatic and environmental conditions is central to understanding ecosystem functioning and assessing potential feedbacks of the carbon cycle to future climate changes. However, annual CO2 budgets for arctic tundra are rare due to the difficulties of performing measurements during non-growing seasons. It is still unclear to what extent arctic tundra ecosystems currently act as a CO2 source, sink or are in balance. This study presents year-round eddy-covariance (EC) measurements of CO2 fluxes for an arctic heath ecosystem on Disko Island, West Greenland (69 °N) over five years. Based on a fusion of year-round EC-derived CO2 fluxes, soil temperature and moisture, the process-oriented model (CoupModel) has been constrained to quantify an annual budget and characterize seasonal patterns of CO2 fluxes. The results show that total photosynthesis corresponds to -202 ± 20 g C m−2 yr-1 with ecosystem respiration of 167 ± 28 g C m-2 yr-1, resulting in NEE of -35 ± 15 g C m-2 yr-1. The respiration loss is mainly described as decomposition of near-surface litter. A year with an anomalously deep snowpack shows a threefold increase in the rate of ecosystem respiration compared to other years. Due to the high CO2 emissions during that winter, the annual budget results in a marked reduction in the CO2 sink. The seasonal patterns of photosynthesis and soil respiration were described using response functions of the forcing atmosphere and soil conditions. Snow depth, topography-related soil moisture, and growing season warmth are identified as important environmental characteristics which most influence seasonal rates of gas exchange.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view