SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Jans Daniel) "

Search: WFRF:(Jans Daniel)

  • Result 1-10 of 11
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Abrahamsson, S., et al. (author)
  • Multifocus structured illumination microscopy for fast volumetric super-resolution imaging
  • 2017
  • In: Biomedical Optics Express. - : OSA - The Optical Society. - 2156-7085. ; 8:9, s. 4135-4140
  • Journal article (peer-reviewed)abstract
    • We here report for the first time the synergistic implementation of structured illumination microscopy (SIM) and multifocus microscopy (MFM). This imaging modality is designed to alleviate the problem of insufficient volumetric acquisition speed in superresolution biological imaging. SIM is a wide-field super-resolution technique that allows imaging with visible light beyond the classical diffraction limit. Employing multifocus diffractive optics we obtain simultaneous wide-field 3D imaging capability in the SIM acquisition sequence, improving volumetric acquisition speed by an order of magnitude. Imaging performance is demonstrated on biological specimens.
  •  
2.
  •  
3.
  • Guala, Dimitri, et al. (author)
  • Experimental validation of predicted cancer genes using FRET
  • 2018
  • In: METHODS AND APPLICATIONS IN FLUORESCENCE. - : IOP PUBLISHING LTD. - 2050-6120. ; 6:3
  • Journal article (peer-reviewed)abstract
    • Huge amounts of data are generated in genome wide experiments, designed to investigate diseases with complex genetic causes. Follow up of all potential leads produced by such experiments is currently cost prohibitive and time consuming. Gene prioritization tools alleviate these constraints by directing further experimental efforts towards the most promising candidate targets. Recently a gene prioritization tool called MaxLink was shown to outperform other widely used state-of-the-art prioritization tools in a large scale in silico benchmark. An experimental validation of predictions made by MaxLink has however been lacking. In this study we used Fluorescence Resonance Energy Transfer, an established experimental technique for detection of protein-protein interactions, to validate potential cancer genes predicted by MaxLink. Our results provide confidence in the use of MaxLink for selection of new targets in the battle with polygenic diseases.
  •  
4.
  •  
5.
  • Johansson, Henrik J., et al. (author)
  • Breast cancer quantitative proteome and proteogenomic landscape
  • 2018
  • In: Molecular & Cellular Proteomics. - : American Society for Biochemistry and Molecular Biology. - 1535-9476 .- 1535-9484. ; 18:8, suppl. 2, s. S40-S40
  • Journal article (other academic/artistic)abstract
    • In the preceding decades, molecular characterization has revolutionized breast cancer (BC) research and therapeutic approaches. Presented herein, an unbiased analysis of breast tumor proteomes, inclusive of 9995 proteins quantified across all tumors, for the first time recapitulates BC subtypes. Additionally, poor-prognosis basal-like and luminal B tumors are further subdivided by immune component infiltration, suggesting the current classification is incomplete. Proteome-based networks distinguish functional protein modules for breast tumor groups, with co-expression of EGFR and MET marking ductal carcinoma in situ regions of normal-like tumors and lending to a more accurate classification of this poorly defined subtype. Genes included within prognostic mRNA panels have significantly higher than average mRNA-protein correlations, and gene copy number alterations are dampened at the protein-level; underscoring the value of proteome quantification for prognostication and phenotypic classification. Furthermore, protein products mapping to non-coding genomic regions are identified; highlighting a potential new class of tumor-specific immunotherapeutic targets. 
  •  
6.
  • Johansson, Henrik J., et al. (author)
  • Breast cancer quantitative proteome and proteogenomic landscape
  • 2019
  • In: Nature Communications. - : NATURE PUBLISHING GROUP. - 2041-1723. ; 10
  • Journal article (peer-reviewed)abstract
    • In the preceding decades, molecular characterization has revolutionized breast cancer (BC) research and therapeutic approaches. Presented herein, an unbiased analysis of breast tumor proteomes, inclusive of 9995 proteins quantified across all tumors, for the first time recapitulates BC subtypes. Additionally, poor-prognosis basal-like and luminal B tumors are further subdivided by immune component infiltration, suggesting the current classification is incomplete. Proteome-based networks distinguish functional protein modules for breast tumor groups, with co-expression of EGFR and MET marking ductal carcinoma in situ regions of normal-like tumors and lending to a more accurate classification of this poorly defined subtype. Genes included within prognostic mRNA panels have significantly higher than average mRNA-protein correlations, and gene copy number alterations are dampened at the protein-level; underscoring the value of proteome quantification for prognostication and phenotypic classification. Furthermore, protein products mapping to non-coding genomic regions are identified; highlighting a potential new class of tumor-specific immunotherapeutic targets.
  •  
7.
  • Stoldt, Stefan, et al. (author)
  • Mic60 exhibits a coordinated clustered distribution along and across yeast and mammalian mitochondria
  • 2019
  • In: Proceedings of the National Academy of Sciences of the United States of America. - : NATL ACAD SCIENCES. - 0027-8424 .- 1091-6490. ; 116:20, s. 9853-9858
  • Journal article (peer-reviewed)abstract
    • Mitochondria are tubular double-membrane organelles essential for eukaryotic life. They form extended networks and exhibit an intricate inner membrane architecture. The MICOS (mitochondrial contact site and cristae organizing system) complex, crucial for proper architecture of the mitochondrial inner membrane, is localized primarily at crista junctions. Harnessing superresolution fluorescence microscopy, we demonstrate that Mic60, a subunit of the MICOS complex, as well as several of its interaction partners are arranged into intricate patterns in human and yeast mitochondria, suggesting an ordered distribution of the crista junctions. We show that Mic60 forms clusters that are preferentially localized in the inner membrane at two opposing sides of the mitochondrial tubules so that they form extended opposing distribution bands. These Mic60 distribution bands can be twisted, resulting in a helical arrangement. Focused ion beam milling-scanning electron microscopy showed that in yeast the twisting of the opposing distribution bands is echoed by the folding of the inner membrane. We show that establishment of the Mic60 distribution bands is largely independent of the cristae morphology. We suggest that Mic60 is part of an extended multiprotein interaction network that scaffolds mitochondria.
  •  
8.
  • Wurm, Christian A., et al. (author)
  • Correlative STED super-resolution light and electron microscopy on resin sections
  • 2019
  • In: Journal of Physics D. - : Institute of Physics (IOP). - 0022-3727 .- 1361-6463. ; 52:37
  • Journal article (peer-reviewed)abstract
    • Correlative light and electron microscopy approaches can reveal the localisation of specific proteins while providing detailed information on the cellular context, thereby combining the strengths of both imaging modalities. The major challenge in combining fluorescence microscopy with electron microscopy is the different sample preparation requirements necessary for obtaining high quality data from both modalities. To overcome this limitation, we combined conventional sample preparation protocols for electron microscopy with post-embedding labelling on ultra-thin sections using antibodies and other specific ligands. We successfully employed STED super-resolution microscopy to image the subcellular distribution of several targets in various specimen including E. coli, T brucei, S. cerevisiae, human cancer cells and bovine sperm. Thus, we present widely applicable methods facilitating the use of antibodies for correlative super-resolution light and electron microscopy of post-embedding labelled targets.
  •  
9.
  • Ygberg, Sofia, et al. (author)
  • A missense mutation converts the Na+,K+-ATPase into an ion channel and causes therapy-resistant epilepsy.
  • 2021
  • In: Journal of Biological Chemistry. - : Elsevier. - 0021-9258 .- 1083-351X. ; 297:6
  • Journal article (peer-reviewed)abstract
    • The ion pump Na+,K+-ATPase is a critical determinant of neuronal excitability; however, its role in the etiology of diseases of the central nervous system (CNS) is largely unknown. We describe here the molecular phenotype of a Trp931Arg mutation of the Na+,K+-ATPase catalytic α1 subunit in an infant diagnosed with therapy-resistant lethal epilepsy. In addition to the pathological CNS phenotype, we also detected renal wasting of Mg2+. We found that membrane expression of the mutant α1 protein was low, and ion pumping activity was lost. Arginine insertion into membrane proteins can generate water-filled pores in the plasma membrane, and our molecular dynamic (MD) simulations of the principle states of Na+,K+-ATPase transport demonstrated massive water inflow into mutant α1 and destabilization of the ion-binding sites. MD simulations also indicated that a water pathway was created between the mutant arginine residue and the cytoplasm, and analysis of oocytes expressing mutant α1 detected a nonspecific cation current. Finally, neurons expressing mutant α1 were observed to be depolarized compared with neurons expressing wild-type protein, compatible with a lowered threshold for epileptic seizures. The results imply that Na+,K+-ATPase should be considered a neuronal locus minoris resistentia in diseases associated with epilepsy and with loss of plasma membrane integrity.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view