SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Jenndahl L.) "

Search: WFRF:(Jenndahl L.)

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Håkansson, Joakim, 1975, et al. (author)
  • Individualized tissue-engineered veins as vascular grafts: A proof of concept study in pig
  • 2021
  • In: Journal of Tissue Engineering and Regenerative Medicine. - : Hindawi Limited. - 1932-6254 .- 1932-7005. ; 15:10, s. 818-830
  • Journal article (peer-reviewed)abstract
    • Personalized tissue engineered vascular grafts are a promising advanced therapy medicinal product alternative to autologous or synthetic vascular grafts utilized in blood vessel bypass or replacement surgery. We hypothesized that an individualized tissue engineered vein (P-TEV) would make the body recognize the transplanted blood vessel as autologous, decrease the risk of rejection and thereby avoid lifelong treatment with immune suppressant medication as is standard with allogenic organ transplantation. To individualize blood vessels, we decellularized vena cava from six deceased donor pigs and tested them for cellular removal and histological integrity. A solution with peripheral blood from the recipient pigs was used for individualized reconditioning in a perfusion bioreactor for seven days prior to transplantation. To evaluate safety and functionality of the individualized vascular graft in vivo, we transplanted reconditioned porcine vena cava into six pigs and analyzed histology and patency of the graft at different time points, with three pigs at the final endpoint 4-5 weeks after surgery. Our results showed that the P-TEV was fully patent in all animals, did not induce any occlusion or stenosis formation and we did not find any signs of rejection. The P-TEV showed rapid recellularization in vivo with the luminal surface covered with endothelial cells. In summary, the results indicate that P-TEV is functional and have potential for use as clinical transplant grafts.
  •  
2.
  • Jenndahl, L., et al. (author)
  • Personalized tissue-engineered arteries as vascular graft transplants : A safety study in sheep
  • 2022
  • In: Regenerative Therapy. - : Japanese Society of Regenerative Medicine. - 2352-3204. ; 21, s. 331-341
  • Journal article (peer-reviewed)abstract
    • Patients with cardiovascular disease often need replacement or bypass of a diseased blood vessel. With disadvantages of both autologous blood vessels and synthetic grafts, tissue engineering is emerging as a promising alternative of advanced therapy medicinal products for individualized blood vessels. By reconditioning of a decellularized blood vessel with the recipient's own peripheral blood, we have been able to prevent rejection without using immunosuppressants and prime grafts for efficient recellularization in vivo. Recently, decellularized veins reconditioned with autologous peripheral blood were shown to be safe and functional in a porcine in vivo study as a potential alternative for vein grafting. In this study, personalized tissue engineered arteries (P-TEA) were developed using the same methodology and evaluated for safety in a sheep in vivo model of carotid artery transplantation. Five personalized arteries were transplanted to carotid arteries and analyzed for safety and patency as well as with histology after four months in vivo. All grafts were fully patent without any occlusion or stenosis. The tissue was well cellularized with a continuous endothelial cell layer covering the luminal surface, revascularized adventitia with capillaries and no sign of rejection or infection. In summary, the results indicate that P-TEA is safe to use and has potential as clinical grafts. 
  •  
3.
  • Simsa, Robin, et al. (author)
  • Brain organoid formation on decellularized porcine brain ECM hydrogels
  • 2021
  • In: PLOS ONE. - : Public Library of Science. - 1932-6203. ; 16:1
  • Journal article (peer-reviewed)abstract
    • Human brain tissue models such as cerebral organoids are essential tools for developmental and biomedical research. Current methods to generate cerebral organoids often utilize Matrigel as an external scaffold to provide structure and biologically relevant signals. Matrigel however is a nonspecific hydrogel of mouse tumor origin and does not represent the complexity of the brain protein environment. In this study, we investigated the application of a decellularized adult porcine brain extracellular matrix (B-ECM) which could be processed into a hydrogel (B-ECM hydrogel) to be used as a scaffold for human embryonic stem cell (hESC)-derived brain organoids. We decellularized pig brains with a novel detergent- and enzyme-based method and analyzed the biomaterial properties, including protein composition and content, DNA content, mechanical characteristics, surface structure, and antigen presence. Then, we compared the growth of human brain organoid models with the B-ECM hydrogel or Matrigel controls in vitro. We found that the native brain source material was successfully decellularized with little remaining DNA content, while Mass Spectrometry (MS) showed the loss of several brain-specific proteins, while mainly different collagen types remained in the B-ECM. Rheological results revealed stable hydrogel formation, starting from B-ECM hydrogel concentrations of 5 mg/mL. hESCs cultured in B-ECM hydrogels showed gene expression and differentiation outcomes similar to those grown in Matrigel. These results indicate that B-ECM hydrogels can be used as an alternative scaffold for human cerebral organoid formation, and may be further optimized for improved organoid growth by further improving protein retention other than collagen after decellularization.
  •  
4.
  • Simsa, Robin, et al. (author)
  • Effect of fluid dynamics on decellularization efficacy and mechanical properties of blood vessels
  • 2019
  • In: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 14:8
  • Journal article (peer-reviewed)abstract
    • Decellularization of blood vessels is a promising approach to generate native biomaterials for replacement of diseased vessels. The decellularization process affects the mechanical properties of the vascular graft and thus can have a negative impact for in vivo functionality. The aim of this study was to determine how detergents under different fluid dynamics affects decellularization efficacy and mechanical properties of the vascular graft. We applied a protocol utilizing 1% TritonX, 1% Tributyl phosphate (TnBP) and DNase on porcine vena cava. The detergents were applied to the vessels under different conditions; static, agitation and perfusion with 3 different perfusion rates (25, 100 and 400 mL/min). The decellularized grafts were analyzed with histological, immunohistochemical and mechanical tests. We found that decellularization efficacy was equal in all groups, however the luminal ultrastructure of the static group showed remnant cell debris and the 400 mL/min perfusion group showed local damage and tearing of the luminal surface. The mechanical stiffness and maximum tensile strength were not influenced by the detergent application method. In conclusion, our results indicate that agitation or low-velocity perfusion with detergents are preferable methods for blood vessel decellularization.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view