SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Ji Qinglei) "

Search: WFRF:(Ji Qinglei)

  • Result 1-10 of 22
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Chen, Mo, et al. (author)
  • Study on Efficient Fused Deposition Modelling of Thermoplastic Polyurethane Inflatable Wall Features for Airtightness
  • 2020
  • In: Swedish Production Symposium 2020.
  • Conference paper (peer-reviewed)abstract
    • The thermoplastic polyurethane (TPU) material is an elastomer that canbe used for inflatable products. Fused deposition modelling (FDM) is a widelyused additive manufacturing process for TPU material due to the capability ofgenerating complex structures with low cost. However, TPU is soft and thusdifficult to be extruded as continuously and uniformly as hard materials such aspolylactide by FDM. Inappropriate extruder structure and speed settings can leadto filament buckling problem, resulting in poor material filling quality, longprinting time and low printing success rate. This paper aims at improving the FDMprinting efficiency of TPU inflatable products by adding lateral support to thefilament and finding out the appropriate speed ranges for different wall featuresand thicknesses. Firstly, a filament guide sheet is designed as being inserted intothe gap between the drive gears and the bottom frame of the gear chamber in orderto prevent the soft TPU filament from buckling. Secondly, inflatable product wallfeatures are classified into floors, roofs and sidewalls and experiment for findingthe relationship between printing speed and airtightness is carried out. In order toverify the proposed solution, wall features are printed and the material fillingsobtained under different printing speeds are compared by measuring theairtightness of the wall features. Results show that the proposed filament guidesheet mitigates filament buckling, and the speed range that meets the airtightnessrequirement can be found for various wall features and thicknesses. In summary,the sealing of the filament feeding channel between the drive gears and the nozzle,as well as the speed optimisation according to product features, are essential forthe efficient printing of TPU inflatable products.
  •  
2.
  • Ji, Qinglei, et al. (author)
  • A Flexible 4D Printing Service Platform for Smart Manufacturing
  • 2020
  • In: Swedish Production Symposium.
  • Conference paper (peer-reviewed)abstract
    • With the extensive application of 3D printing (3DP) in smartmanufacturing, 4D printing (4DP), which enhances 3D printed objects with shapemorphing ability by using smart materials, has shown significant industrial potentialand attracted tremendous attention. One key concern of 4DP is how to effectivelyand quickly meet different production and application requirements considering thecomplexity of materials and diversity of stimulus methods. In order to provide ageneral research platform for 4DP researchers, a flexible 4DP service platform isproposed. Components and modules for building 4DP and test systems are modeledand virtualized to form the different resources. These resources are then integratedvirtually or physically to provide some basic functions such as a 3D displacementstage or a visual monitoring system. According to different 4DP requirements, thesefunctions are then encapsulated into services to serve different research. Theplatform enables a variety of 4DP applications in smart manufacturing environmentssuch as 4D printed magnetic medical robots, test platform for studying the 4DPresponse, etc. A case study on designing a ferromagnetic 4DP platform based on theservice platform is performed to prove the feasibility of the method.
  •  
3.
  • Ji, Qinglei, et al. (author)
  • A Modular Microfluidic Device via Multimaterial 3D Printing for Emulsion Generation
  • 2018
  • In: Scientific Reports. - : Springer Nature. - 2045-2322. ; 8
  • Journal article (peer-reviewed)abstract
    • 3D-printing (3DP) technology has been developing rapidly. However, limited studies on the contribution of 3DP technology, especially multimaterial 3DP technology, to droplet-microfluidics have been reported. In this paper, multimaterial 3D-printed devices for the pneumatic control of emulsion generation have been reported. A 3D coaxial flexible channel with other rigid structures has been designed and printed monolithically. Numerical and experimental studies have demonstrated that this flexible channel can be excited by the air pressure and then deform in a controllable way, which can provide the active control of droplet generation. Furthermore, a novel modular microfluidic device for double emulsion generation has been designed and fabricated, which consists of three modules: function module, T-junction module, and co-flow module. The function module can be replaced by (1) Single-inlet module, (2) Pneumatic Control Unit (PCU) module and (3) Dual-inlet module. Different modules can be easily assembled for different double emulsion production. By using the PCU module, double emulsions with different number of inner droplets have been successfully produced without complicated operation of flow rates of different phases. By using single and dual inlet module, various double emulsions with different number of encapsulated droplets or encapsulated droplets with different compositions have been successfully produced, respectively.
  •  
4.
  • Ji, Qinglei, 1993- (author)
  • A stop valve
  • 2018
  • Patent (pop. science, debate, etc.)
  •  
5.
  •  
6.
  • Ji, Qinglei, et al. (author)
  • Customized protective visors enabled by closed loop controlled 4D printing
  • 2022
  • In: Scientific Reports. - : Springer Nature. - 2045-2322. ; 12:1
  • Journal article (peer-reviewed)abstract
    • The COVID-19 pandemic makes protective visors important for protecting people in close contacts. However, the production of visors cannot be increased greatly in a short time, especially at the beginning of the pandemic. The 3D printing community contributed largely in fabricating the visor frames using the rapid and adaptive manufacturing ability. While there are many open source designs of face visors for affordable 3D printers, all these designs fabricate mono-sized frames without considering diverse users’ dimensions. Here, a new method of visor post-processing technology enabled by closed loop controlled 4D printing is proposed. The new process can further deform the printed visor to any customized size for a more comfortable user experience. FEM analysis of the customized visor also shows consistent wearing experience in different circumstances compared with the old visor design. The fabrication precision and time cost of the method is studied experimentally. A case study regarding the reducing, reusing and recycling (3R) of customized visors in classrooms is proposed to enable the customized visors manufactured in a more sustainable way.
  •  
7.
  • Ji, Qinglei, et al. (author)
  • Design and calibration of 3D printed soft deformation sensors for soft actuator control
  • 2023
  • In: Mechatronics (Oxford). - : Elsevier BV. - 0957-4158 .- 1873-4006. ; 92, s. 102980-102980
  • Journal article (peer-reviewed)abstract
    • Soft actuators made from compliant materials are superior to conventional rigid robots in terms of flexibility, adaptability and safety. However, an inherent drawback of soft actuator is the low actuation precision. Implementing closed loop control is a possible solution, but the soft actuator shape can hardly be measured directly by commercially available sensors, which either are too stiff for integration or cause performance degradation of the actuator. Although 3D printing has been applied to print bendable sensors from conductive materials, they either have larger stiffness than the soft actuator or are made from specially designed materials that are difficult to reproduce. In this study, easily accessible commercial soft conductive material is applied to directly 3D print soft sensors on soft actuators. Different configurations of the printed sensors are studied to investigate how the sensor design affects the performance. The best sensor configuration is selected to provide shape feedback using its changing resistance during deformation. Compared with a commercial flexible bending sensor, the printed sensor has less influences on the soft actuator performance and enjoys higher shape estimation accuracy. Closed loop shape control of the actuator using feedback from the 3D printed sensor is then designed, implemented and compared with the control results using image feedback. A gripper consisting of three individually controlled soft actuators demonstrates the applications of the soft sensor.
  •  
8.
  • Ji, Qinglei, et al. (author)
  • Design and closed loop control of a 3D printed soft actuator
  • 2020
  • In: 2020 16th IEEE International Conference on Automation Science and Engineering (CASE). - : IEEE. ; , s. 842-848
  • Conference paper (peer-reviewed)abstract
    • Soft robots, made of soft materials such as di-electric elastomer or shape memory polymers, have receivedtremendous attentions due to its dexterousness, flexibility andsafety compared with rigid robots. However, wider applicationof soft robots is limited due to their complex fabrication processand poor controllability. Here, we introduce a closed loopcontrolled soft actuator that is fully 3D printed with flexiblematerial. The structure of the soft actuator is optimized withFinite Element Method (FEM) to acquire shortest fabricationtime and highest deformation for same stimulus input. A desk-top Fused Deposition Modeling (FDM) 3D printer is used forlow-cost fabrication of such actuators. A webcamera is used forthe image feedback which offers the real time shape monitoringof the soft actuator. An output feedback Proportional IntegralDerivative (PID) controller with lowpass filter is developed withpole placement design method based on a data-driven modelof the 3D printed soft actuator. The controller is implementedto regulate the input air pressure to ensure a fast-response, precise and robust shape changing for any work environments.
  •  
9.
  • Ji, Qinglei, et al. (author)
  • Development of a 3D Printed Multi-Axial Force Sensor
  • 2022
  • In: Advances in Transdisciplinary Engineering. - : IOS Press.
  • Book chapter (other academic/artistic)abstract
    • Sensors play a vital role in the industry transformation. Commercialsensors such as force sensors have limited options in shapes, stiffness, measuringranges, etc. Customized force sensors optimized for the production environmentcan greatly increase the integration workflow and avoid the trade-off in design freedomof using commercial sensors. 3D printing, as a rapid prototyping technology,offers great potential in fabricating force sensors customized to a specific application.However, most of the existing 3D printed force sensors are limited to onedirectionalsensing, while most of them use materials developed in-house. In thisstudy, a fully 3D printed force sensor using commercial conductive 3D printing materialsis presented. By utilizing the resistance change when under load, the sensorcan estimate the applied force in multiple directions. The resistive performance ofthe prototype 3D printed force sensor is first characterized and then validated in acase study.
  •  
10.
  • Ji, Qinglei, et al. (author)
  • Feedback control for the precise shape morphing of 4D printed shape memory polymer
  • 2021
  • In: IEEE Transactions on Industrial Electronics. - : IEEE. - 0278-0046 .- 1557-9948. ; , s. 12698-12707
  • Journal article (peer-reviewed)abstract
    • Four-dimensional printing (4DP) is a newly emerged technology that uses smart materials for additive manufacturing and thus enables shape and/or property change upon stimulus after the printing process. Present study on 4DP has been focused on open loop stimulus, which can hardly ensure high shape precision and predictable final states. In this paper, a new closed loop 4DP (CL4DP) process supplementing 4D printed actuation with closed loop control methods is proposed. Image feedback is used for enhancing the conventional open loop 4DP morphing process and a controller is implemented to regulate the intensity of the stimulus accordingly in real-time. To achieve precise control, a nonlinear affine system model is built by model identification with measurement data to describe the dynamic shape recovery process of the 4D printed Shape Memory Polymer (SMP). Precise shape control is achieved and the effects of controller parameters on the precision of CL4DP are studied. Traditionally, SMP has a discrete number of selected steady states. With CL4DP, such steady states can be continuous and arbitrary.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 22

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view