SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Johansson Jana H. 1985 ) "

Search: WFRF:(Johansson Jana H. 1985 )

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Cousins, Ian, et al. (author)
  • Outside the Safe Operating Space of a New Planetary Boundary for Per- and Polyfluoroalkyl Substances (PFAS)
  • 2022
  • In: Environmental Science and Technology. - : American Chemical Society (ACS). - 0013-936X .- 1520-5851. ; 56:16, s. 11172-11179
  • Journal article (peer-reviewed)abstract
    • It is hypothesized that environmental contamination by per- and polyfluoroalkyl substances (PFAS) defines a separate planetary boundary and that this boundary has been exceeded. This hypothesis is tested by comparing the levels of four selected perfluoroalkyl acids (PFAAs) (i.e., perfluorooctanesulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorohexanesulfonic acid (PFHxS), and perfluorononanoic acid (PFNA)) in various global environmental media (i.e., rainwater, soils, and surface waters) with recently proposed guideline levels. On the basis of the four PFAAs considered, it is concluded that (1) levels of PFOA and PFOS in rainwater often greatly exceed US Environmental Protection Agency (EPA) Lifetime Drinking Water Health Advisory levels and the sum of the aforementioned four PFAAs (Σ4 PFAS) in rainwater is often above Danish drinking water limit values also based on Σ4 PFAS; (2) levels of PFOS in rainwater are often above Environmental Quality Standard for Inland European Union Surface Water; and (3) atmospheric deposition also leads to global soils being ubiquitously contaminated and to be often above proposed Dutch guideline values. It is, therefore, concluded that the global spread of these four PFAAs in the atmosphere has led to the planetary boundary for chemical pollution being exceeded. Levels of PFAAs in atmospheric deposition are especially poorly reversible because of the high persistence of PFAAs and their ability to continuously cycle in the hydrosphere, including on sea spray aerosols emitted from the oceans. Because of the poor reversibility of environmental exposure to PFAS and their associated effects, it is vitally important that PFAS uses and emissions are rapidly restricted.
  •  
2.
  • Johansson, Jana H., 1985-, et al. (author)
  • Can the use of deactivated glass fibre filters eliminate sorption artefacts associated with active air sampling of perfluorooctanoic acid?
  • 2017
  • In: Environmental Pollution. - : Elsevier BV. - 0269-7491 .- 1873-6424. ; 224, s. 779-786
  • Journal article (peer-reviewed)abstract
    • Experimental work was undertaken to test whether gaseous perfluorooctanoic acid (PFOA) sorbs to glassfibre filters (GFFs) during air sampling, causing an incorrect measure of the gas-particle equilibriumdistribution. Furthermore, tests were performed to investigate whether deactivation by siliconisationprevents sorption of gaseous PFOA to filter materials. An apparatus was constructed to closely simulate ahigh-volume air sampler, although with additional features allowing introduction of gaseous test compoundsinto an air stream stripped from particles. The set-up enabled investigation of the sorption ofgaseous test compounds to filter media, eliminating any contribution from particles. Experiments wereperformed under ambient outdoor air conditions at environmentally relevant analyte concentrations.The results demonstrate that gaseous PFOA sorbs to GFFs, but that breakthrough of gaseous PFOA on theGFFs occurs at trace-level loadings. This indicates that during high volume air sampling, filters do notquantitatively capture all the PFOA in the sampled air. Experiments with siliconised GFFs showed thatthis filter pre-treatment reduced the sorption of gaseous PFOA, but that sorption still occurred atenvironmentally relevant air concentrations. We conclude that deactivation of GFFs does not allow forthe separation of gaseous and particle bound perfluorinated carboxylic acids (PFCAs) during active airsampling. Consequently, the well-recognised theory that PFCAs do not prevail as gaseous species in theatmosphere may be based on biased measurements. Caution should be taken to ensure that this artefactwill not bias the conclusions of future field studies.
  •  
3.
  • Johansson, Jana H., 1985-, et al. (author)
  • Water-to-air transfer of branched and linear PFOA : Influence of pH, concentration and water type
  • 2017
  • In: Emerging Contaminants. - : Elsevier BV. - 2405-6650 .- 2405-6642. ; 3:1, s. 46-53
  • Journal article (peer-reviewed)abstract
    • The volatilisation of perfluorooctanoic acid (PFOA) was measured experimentally at a range of pH valuesusing a previously published laboratory method. Water-to-air transfer was studied for five structuralisomers, namely: the linear isomer (n-PFOA) and the four most commonly occurring branched isomers(3-, 4-, 5- and 6-PFOA). The influence of water concentration and water type on the pH-dependent waterto-air transfer was also investigated for n-PFOA. The water-to-air transfer was studied over the course of 48 h at pH values ranging from 0.2 to 5.5. Under all experimental conditions tested, the volatilisation ofPFOA was negligible at pH > 2.5. In experiments performed with MilliQ water, volatilisation increasedwith decreasing water pH. In experiments performed with tap water and lake water, maximum volatilisationwas observed at pH 1. The concentration of PFOA in water had no influence on the pH value atwhich water-to-air transfer was observed (i.e. at pH < 2.5) for the concentration range tested (0.1e50 mg/L PFOA in deionised water). Although the percentage of PFOA volatilised was significantly different forthe four branched isomers at low pH, volatilisation was not observed above pH 2.5 for any branchedisomer suggesting that all PFOA isomers have a low pKa. Overall, these laboratory results demonstratethat volatilisation of any structural isomer of PFOA from water is negligible at environmentally-relevantconditions. It is unlikely that PFOA isomers will be fractionated in the environment as a result of volatilisationbecause it is a process of negligible environmental relevance.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view