SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Josefsson Ask Andreas 1990) "

Search: WFRF:(Josefsson Ask Andreas 1990)

  • Result 1-6 of 6
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Ekström, Maria, 1988, et al. (author)
  • Towards phonon routing: controlling propagating acoustic waves in the quantum regime
  • 2019
  • In: New Journal of Physics. - : IOP Publishing. - 1367-2630. ; 21:12
  • Journal article (peer-reviewed)abstract
    • We explore routing of propagating phonons in analogy with previous experiments on photons. Surface acoustic waves (SAWs) in the microwave regime are scattered by a superconducting transmon qubit. The transmon can be tuned on or off resonance with the incident SAW field using an external magnetic field or the Autler-Townes effect, and thus the reflection and transmission of the SAW field can be controlled in time. We observe 80% extinction in the transmission of the low power continuous signal and a 40 ns rise time of the router. The slow propagation speed of SAWs on solid surfaces allows for in-flight manipulations of the propagating phonons. The ability to route short, 100 ns, pulses enables new functionality, for instance to catch an acoustic phonon between two qubits and then release it in a controlled direction.
  •  
2.
  • Josefsson Ask, Andreas, 1990, et al. (author)
  • Cavity-free vacuum-Rabi splitting in circuit quantum acoustodynamics
  • 2019
  • In: Physical Review A. - 2469-9934 .- 2469-9926. ; 99:1
  • Journal article (peer-reviewed)abstract
    • Artificial atoms coupled to surface acoustic waves (SAWs) have played a crucial role in the recent development of circuit quantum acoustodynamics. In this paper, we have investigated the interaction of an artificial atom and SAWs beyond the weak-coupling regime, focusing on the role of the interdigital transducer (IDT) that enables the coupling. We find a parameter regime in which the IDT acts as a cavity for the atom, rather than an antenna. In other words, the atom forms its own cavity. Similar to an atom coupled to an explicit cavity, this regime is characterized by vacuum-Rabi splitting, as the atom hybridizes with the phononic vacuum inside the IDT. This hybridization is possible because of the interdigitated coupling, which has a large spatial extension, and the slow propagation speed of SAWs. We work out a criterion for entering this regime from a model based on standard circuit-quantization techniques, taking only material parameters as inputs. Most notably, we find this regime hard to avoid for an atom on top of a strong piezoelectric material, such as lithium niobate (LiNbO3). The SAW-coupled atom on top of LiNbO3 can thus be regarded as an atom-cavity-bath system. On weaker piezoelectric materials, the number of IDT electrodes needs to be large in order to reach this regime.
  •  
3.
  • Josefsson Ask, Andreas, 1990, et al. (author)
  • Non-Markovian Steady States of a Driven Two-Level System
  • 2022
  • In: Physical Review Letters. - 1079-7114 .- 0031-9007. ; 128:8
  • Journal article (peer-reviewed)abstract
    • We show that an open quantum system in a non-Markovian environment can reach steady states that it cannot reach in a Markovian environment. As these steady states are unique for the non-Markovian regime, they could offer a simple way of detecting non-Markovianity, as no information about the system's transient dynamics is necessary. In particular, we study a driven two-level system (TLS) in a semi-infinite waveguide. Once the waveguide has been traced out, the TLS sees an environment with a distinct memory time. The memory time enters the equations as a time delay that can be varied to compare a Markovian to a non-Markovian environment. We find that some non-Markovian states show exotic behaviors such as population inversion and steady-state coherence beyond 1/8, neither of which is possible for a driven TLS in the Markovian regime, where the time delay is neglected. Additionally, we show how the coherence of quantum interference is affected by time delays in a driven system by extracting the effective Purcell-modified decay rate of a TLS in front of a mirror.
  •  
4.
  • Josefsson Ask, Andreas, 1990 (author)
  • Quantum Electro- and Acoustodynamics in Waveguides
  • 2021
  • Doctoral thesis (other academic/artistic)abstract
    • The study of light-matter interaction in superconducting quantum circuits has seen remarkable progress over the last $20$ years. By engineering artificial atoms, novel quantum phenomena have been demonstrated, and old ideas have come into a new light. Beyond their application to basic science, the prospect of implementing large-scale quantum information processing with superconducting circuits has fueled a rapid development of surrounding technologies, with ever-increasing control over their behavior as a result. The field's success stems primarily from the flexible design and strong non-linearity of the artificial atom, whose coherent interaction with both electrical and mechanical degrees of freedom has opened many doors for science. This thesis deals with the interaction between artificial atoms and quantum fields in one-dimensional waveguides. The waveguide represents a one-dimensional environment for the atom, which we use to study the properties of open quantum systems. All quantum systems are, in fact, open, and interactions between the system and its environment lead inevitably to a loss of energy and quantum coherence. A continuous loss of information into the environment is called a Markovian process. The work contained in this thesis indicates that deviations from a Markovian process can be detected in the steady state of driven systems. This could simplify the detection of non-Markovianity in open quantum systems, as no information about the system's transient dynamics would be necessary. Specifically, this thesis considers both electromagnetic fields in microwave transmission lines and acoustic fields in the form of surface acoustic waves (SAWs) traveling on the surface of solids. The recent realization of artificial atoms interacting with acoustic waves has opened up a new research field called quantum acoustics. We have built a model of the interaction between atoms and SAWs that predicts the existence of a new regime where the atom forms its own cavity. Additionally, we have considered synthesizing electromagnetically induced transparency, a quantum optics phenomena in opaque media where the absorption of photons is canceled, in waveguides using multiple closely spaced two-level systems. Some of the work in this thesis represents experimental work done in collaboration. In the first experiment, we studied the routing of acoustic waves at the quantum level. In the other experiment, we demonstrated electromagnetically induced transparency by creating an effective $\Lambda$ system using a giant artificial atom. This thesis reviews the numerical techniques used to model these experiments.
  •  
5.
  • Vadiraj, A. M., et al. (author)
  • Engineering the level structure of a giant artificial atom in waveguide quantum electrodynamics
  • 2021
  • In: Physical Review A. - 2469-9934 .- 2469-9926. ; 103:2
  • Journal article (peer-reviewed)abstract
    • Engineering light-matter interactions at the quantum level has been central to the pursuit of quantum optics for decades. Traditionally, this has been done by coupling emitters, typically natural atoms and ions, to quantized electromagnetic fields in optical and microwave cavities. In these systems, the emitter is approximated as an idealized dipole, as its physical size is orders of magnitude smaller than the wavelength of light. Recently, artificial atoms made from superconducting circuits have enabled new frontiers in light-matter coupling, including the study of "giant" atoms which cannot be approximated as simple dipoles. Here, we explore an implementation of a giant artificial atom, formed from a transmon qubit coupled to propagating microwaves at multiple points along an open transmission line. The nature of this coupling allows the qubit radiation field to interfere with itself, leading to some striking giant-atom effects. For instance, we observe strong frequency-dependent couplings of the qubit energy levels to the electromagnetic modes of the transmission line. Combined with the ability to in situ tune the qubit energy levels, we show that we can modify the relative coupling rates of multiple qubit transitions by more than an order of magnitude. By doing so, we engineer a metastable excited state, allowing us to operate the giant transmon as an effective lambda system where we clearly demonstrate electromagnetically induced transparency.
  •  
6.
  • Wennerdal, Niclas, 1986, et al. (author)
  • Breaking time-reversal and translational symmetry at edges of d -wave superconductors: Microscopic theory and comparison with quasiclassical theory
  • 2020
  • In: Physical Review Research. - 2643-1564. ; 2:4
  • Journal article (peer-reviewed)abstract
    • We report results of a microscopic calculation of a second-order phase transition into a state-breaking time-reversal and translational invariance along pair-breaking edges of d-wave superconductors. By solving a tight-binding model through exact diagonalization with the Bogoliubov–de Gennes method, we find that such a state with current loops having a diameter of a few coherence lengths is energetically favorable below T∗ between 10%–20% of Tc of bulk superconductivity, depending on model parameters. This extends our previous studies of such a phase crystal within the quasiclassical theory of superconductivity, and shows that the instability is not qualitatively different when including a more realistic band structure and the fast oscillations on the scale of the Fermi wavelength. Effects of size quantization and Friedel oscillations are not detrimental. We also report on a comparison with quasiclassical theory with the Fermi surfaces extracted from the tight-binding models used in the microscopic calculation. There are quantitative differences in for instance the value of T∗ between the different models, but we can explain the predicted transition temperature within each model as due to the different spectral weights of zero-energy Andreev bound states and the resulting gain in free energy by breaking time-reversal and translational invariance below T∗.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-6 of 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view