SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Kamboj Nikhil) "

Search: WFRF:(Kamboj Nikhil)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Hasani, Arman, et al. (author)
  • Laser Processing of Liquid Feedstock Plasma-Sprayed Lithium Titanium Oxide Solid-State-Battery Electrode
  • 2024
  • In: Coatings. - : MDPI. - 2079-6412. ; 14:2
  • Journal article (peer-reviewed)abstract
    • The astonishing safety and capacity characteristics of solid-state-batteries are encouraging researchers and companies to work on the manufacturing, development, and characterization of battery materials. In the present work, the effects of laser beam interaction with a liquid feedstock plasma-sprayed ceramic solid-state-battery (SSB) material coating were studied. Lithium Titanium Oxide (LTO) in the form of an aqueous suspension consisting of submicron powder particles was plasma-sprayed for the first time using a high-power axial III plasma torch on an aluminum substrate. The plasma-sprayed LTO coating suspension was subsequently post-processed using a fiber laser. The energy input of the laser beam on the surface of the deposited layer was the main variable. By varying the laser power and laser processing speed, the energy input values were varied, with values of 3.8 J/mm2, 9.6 J/mm2, 765.9 J/mm2, and 1914.6 J/mm2, and their effects on some key characteristics such as laser-processed zone dimensions and chemical composition were investigated. The results indicated that changing the laser beam parameter values has appreciable effects on the geometry, surface morphology, and elemental distribution of laser-processed zones; for instance, the highest energy inputs were 33% and 152%, respectively, higher than the lowest energy input.
  •  
2.
  • Kumar, Rahul, et al. (author)
  • Bioinspired and Multifunctional Tribological Materials for Sliding, Erosive, Machining, and Energy-Absorbing Conditions: A Review
  • 2024
  • In: Biomimetics. - 2313-7673. ; 9:4
  • Research review (peer-reviewed)abstract
    • Friction, wear, and the consequent energy dissipation pose significant challenges in systems with moving components, spanning various domains, including nanoelectromechanical systems (NEMS/MEMS) and bio-MEMS (microrobots), hip prostheses (biomaterials), offshore wind and hydro turbines, space vehicles, solar mirrors for photovoltaics, triboelectric generators, etc. Nature-inspired bionic surfaces offer valuable examples of effective texturing strategies, encompassing various geometric and topological approaches tailored to mitigate frictional effects and related functionalities in various scenarios. By employing biomimetic surface modifications, for example, roughness tailoring, multifunctionality of the system can be generated to efficiently reduce friction and wear, enhance load-bearing capacity, improve self-adaptiveness in different environments, improve chemical interactions, facilitate biological interactions, etc. However, the full potential of bioinspired texturing remains untapped due to the limited mechanistic understanding of functional aspects in tribological/biotribological settings. The current review extends to surface engineering and provides a comprehensive and critical assessment of bioinspired texturing that exhibits sustainable synergy between tribology and biology. The successful evolving examples from nature for surface/tribological solutions that can efficiently solve complex tribological problems in both dry and lubricated contact situations are comprehensively discussed. The review encompasses four major wear conditions: sliding, solid-particle erosion, machining or cutting, and impact (energy absorbing). Furthermore, it explores how topographies and their design parameters can provide tailored responses (multifunctionality) under specified tribological conditions. Additionally, an interdisciplinary perspective on the future potential of bioinspired materials and structures with enhanced wear resistance is presented.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view