SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Kandhadai V) "

Search: WFRF:(Kandhadai V)

  • Result 1-10 of 33
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Andrés, E. C., et al. (author)
  • The AMANDA neutrino telescope
  • 1999
  • In: Nuclear physics B, Proceedings supplements. - 0920-5632 .- 1873-3832. ; 77:1-3, s. 474-485
  • Journal article (peer-reviewed)abstract
    • With an effective telescope area of order 104 m2 for TeV neutrinos, a threshold near ∼50 GeV and a pointing accuracy of 2.5 degrees per muon track, the AMANDA detector represents the first of a new generation of high energy neutrino telescopes, reaching a scale envisaged over 25 years ago. We describe early results on the calibration of natural deep ice as a particle detector as well as on AMANDA's performance as a neutrino telescope.
  •  
3.
  • Andres, E., et al. (author)
  • Selected recent results from AMANDA
  • 2001
  • In: ICHEP 2000. Proceedings of the 30th International Conference on High Energy Physics. - : World Scientific. ; , s. 965-968
  • Conference paper (peer-reviewed)abstract
    • We present a selection of results based on data taken in 1997 with the 302-PMT Antarctic Muon and Neutrino Detector Array-B10 ("AMANDA-B10") array. Atmospheric neutrinos created in the northern hemisphere are observed indirectly through their charged current interactions which produce relativistic, Cherenkov-light-emitting upgoing muons in the South Pole ice cap. The reconstructed angular distribution of these events is in good agreement with expectation and demonstrates the viability of this ice-based device as a neutrino telescope. Studies of nearly vertical upgoing muons limit the available parameter space for WIMP dark matter under the assumption that WIMPS are trapped in the earth's gravitational potential well and annihilate with one another near the earth's center.
  •  
4.
  • Karle, A., et al. (author)
  • Observation of high energy atmospheric neutrinos with AMANDA
  • 2000
  • In: AIP Conference Proceedings. - : American Institute of Physics (AIP). ; , s. 823-827
  • Conference paper (peer-reviewed)abstract
    • In 1997 the Antarctic Muon and Neutrino Detector Array (AMANDA) started operating with 10 strings. In an analysis of data taken during the first year of operation 188 atmospheric neutrino candidates were found. Their zenith angle distribution agrees with expectations based on Monte Carlo simulations. A preliminary upper limit is given on a diffuse flux of high energy neutrinos of astrophysical origin.
  •  
5.
  • Wischnewski, R., et al. (author)
  • The AMANDA neutrino detector
  • 1999
  • In: Nuclear physics B, Proceedings supplements. - : Elsevier. - 0920-5632 .- 1873-3832. ; 75:1-2, s. 412-414
  • Journal article (peer-reviewed)abstract
    • The first stage of the AMANDA High Energy Neutrino Detector at the South Pole, the 302 PMT array AMANDA-B with an expected effective area for TeV neutrinos of ∼ 104 m2, has been taking data since 1997. Progress with calibration, investigation of ice properties, as well as muon and neutrino data analysis are described. The next stage 20-string detector AMANDA-II with ∼800 PMTs will be completed in spring 2000.
  •  
6.
  • Andres, E., et al. (author)
  • AMANDA : Status, results and future
  • 1999
  • In: Proceedings, 8th International Workshop, Venice, Italy, February 23-26, 1999. Vol. 1, 2. ; , s. 63-79
  • Conference paper (peer-reviewed)abstract
    • We review the status of the AMANDA neutrino telescope. We present resultsobtained from the four-string prototype array AMANDA-B4 and describe themethods of track reconstruction and neutrino event separation. We give also firstresults of the analysis of the 10-string detector AMANDA-B10, in particular onatmospheric neutrinos and the search for magnetic monopoles. We sketch thefuture schedule on the way to a cube kilometer telescope at the South Pole,ICECUBE.
  •  
7.
  •  
8.
  • Andrés, E., et al. (author)
  • Observation of high-energy neutrinos using Čerenkov detectors embedded deep in Antarctic ice
  • 2001
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 410:6827, s. 441-443
  • Journal article (peer-reviewed)abstract
    • Neutrinos are elementary particles that carry no electric charge and have little mass. As they interact only weakly with other particles, they can penetrate enormous amounts of matter, and therefore have the potential to directly convey astrophysical information from the edge of the Universe and from deep inside the most cataclysmic high-energy regions. The neutrino's great penetrating power, however, also makes this particle difficult to detect. Underground detectors have observed low-energy neutrinos from the Sun and a nearby supernova2, as well as neutrinos generated in the Earth's atmosphere. But the very low fluxes of high-energy neutrinos from cosmic sources can be observed only by much larger, expandable detectors in, for example, deep water3,4 or ice5. Here we report the detection of upwardly propagating atmospheric neutrinos by the ice-based Antarctic muon and neutrino detector array (AMANDA). These results establish a technology with which to build a kilometre-scale neutrino observatory necessary for astrophysical observations1.
  •  
9.
  • Andrés, E., et al. (author)
  • Recent results from AMANDA
  • 2001
  • In: International Journal of Modern Physics A. - 0217-751X .- 1793-656X. ; 16:1C, s. 1013-1015
  • Journal article (peer-reviewed)abstract
    • We present results based on data taken in 1997 with the 302-PMT Antarctic Muon and Neutrino Detector Array-B10 ("AMANDA-B10") array. Atmospheric neutrinos created in the northern hemisphere are observed indirectly through their charged current interactions which produce relativistic, Cherenkov-light-emitting upgoing muons in the South Pole ice cap. The reconstructed angular distribution of these events is in good agreement with expectation and demonstrates the viability of this ice-based device as a neutrino telescope.
  •  
10.
  • Andres, E., et al. (author)
  • The AMANDA neutrino telescope : Principle of operation and first results
  • 2000
  • In: Astroparticle physics. - : Elsevier. - 0927-6505 .- 1873-2852. ; 13:1, s. 1-20
  • Journal article (peer-reviewed)abstract
    • AMANDA is a high-energy neutrino telescope presently under construction at the geographical South Pole. In the Antarctic summer 1995/96, an array of 80 optical modules (OMs) arranged on 4 strings (AMANDA-B4) was deployed at depths between 1.5 and 2 km. In this paper we describe the design and performance of the AMANDA-B4 prototype, based on data collected between February and November 1996. Monte Carlo simulations of the detector response to down-going atmospheric muon tracks show that the global behavior of the detector is understood. We describe the data analysis method and present first results on atmospheric muon reconstruction and separation of neutrino candidates. The AMANDA array was upgraded with 216 OMs on 6 new strings in 1996/97 (AMANDA-B10), and 122 additional OMs on 3 strings in 1997/98.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 33

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view