SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Kaneko Yoriaki) "

Search: WFRF:(Kaneko Yoriaki)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Saito, Yasuyuki, et al. (author)
  • Regulation by SIRPα of dendritic cell homeostasis in lymphoid tissues
  • 2010
  • In: Blood. - : American Society of Hematology. - 0006-4971 .- 1528-0020. ; 116:18, s. 3517-3525
  • Journal article (peer-reviewed)abstract
    • The molecular basis for regulation of dendritic cell (DC) development and homeostasis remains unclear. Signal regulatory protein α (SIRPα), an immunoglobulin superfamily protein that is predominantly expressed in DCs, mediates cell-cell signaling by interacting with CD47, another immunoglobulin superfamily protein. We now show that the number of CD11c(high) DCs (conventional DCs, or cDCs), in particular, that of CD8-CD4+ (CD4+) cDCs, is selectively reduced in secondary lymphoid tissues of mice expressing a mutant form of SIRPα that lacks the cytoplasmic region. We also found that SIRPα is required intrinsically within cDCs or DC precursors for the homeostasis of splenic CD4+ cDCs. Differentiation of bone marrow cells from SIRPα mutant mice into DCs induced by either macrophage-granulocyte colony-stimulating factor or Flt3 ligand in vitro was not impaired. Although the accumulation of the immediate precursors of cDCs in the spleen was also not impaired, the half-life of newly generated splenic CD4+ cDCs was markedly reduced in SIRPα mutant mice. Both hematopoietic and nonhematopoietic CD47 was found to be required for the homeostasis of CD4+ cDCs and CD8-CD4- (double negative) cDCs in the spleen. SIRPα as well as its ligand, CD47, are thus important for the homeostasis of CD4+ cDCs or double negative cDCs in lymphoid tissues.
  •  
2.
  • Ishikawa-Sekigami, Tomomi, et al. (author)
  • Enhanced phagocytosis of CD47-deficient red blood cells by splenic macrophages requires SHPS-1.
  • 2006
  • In: Biochemical and Biophysical Research Communications - BBRC. - : Elsevier BV. - 0006-291X .- 1090-2104. ; 343:4, s. 1197-200
  • Journal article (peer-reviewed)abstract
    • The interaction of CD47 on red blood cells (RBCs) with SHPS-1 on macrophages is implicated to prevent the phagocytosis of the former cells by the latter cells. Indeed, the rate of clearance of transfused CD47-deficient (CD47(-/-)) RBCs from the bloodstream of wild-type mice was markedly increased compared with wild-type RBCs. Conversely, the rate of clearance of transfused wild-type RBCs was markedly increased in mice that expressed a mutant form of SHPS-1 lacking most of the cytoplasmic region of the protein. However, we here found that the clearance of CD47(-/-) RBCs in SHPS-1 mutant mice was minimal. In addition, the phagocytosis of CD47(-/-) RBCs by splenic macrophages from SHPS-1 mutant mice was markedly reduced compared with wild-type macrophages. These results thus suggest an additional role for CD47 on RBCs in the negative regulation of phagocytosis by macrophages and in determination of the life span of circulating RBCs.
  •  
3.
  • Okazawa, Hideki, et al. (author)
  • Negative regulation of phagocytosis in macrophages by the CD47-SHPS-1 system.
  • 2005
  • In: Journal of Immunology. - 0022-1767 .- 1550-6606. ; 174:4, s. 2004-11
  • Journal article (peer-reviewed)abstract
    • Src homology 2 domain-containing protein tyrosine phosphatase (SHP) substrate-1 (SHPS-1) is a transmembrane protein that is expressed predominantly in macrophages. Its extracellular region interacts with the transmembrane ligand CD47 expressed on the surface of adjacent cells, and its cytoplasmic region binds the protein tyrosine phosphatases SHP-1 and SHP-2. Phagocytosis of IgG- or complement-opsonized RBCs by peritoneal macrophages derived from mice that express a mutant SHPS-1 protein that lacks most of the cytoplasmic region was markedly enhanced compared with that apparent with wild-type macrophages. This effect was not observed either with CD47-deficient RBCs as the phagocytic target or in the presence of blocking Abs to SHPS-1. Depletion of SHPS-1 from wild-type macrophages by RNA interference also promoted FcgammaR-mediated phagocytosis of wild-type RBCs. Ligation of SHPS-1 on macrophages by CD47 on RBCs promoted tyrosine phosphorylation of SHPS-1 and its association with SHP-1, whereas tyrosine phosphorylation of SHPS-1 was markedly reduced in response to cross-linking of FcgammaRs. Treatment with inhibitors of PI3K or of Syk, but not with those of MEK or Src family kinases, abolished the enhancement of FcgammaR-mediated phagocytosis apparent in macrophages from SHPS-1 mutant mice. In contrast, FcgammaR-mediated tyrosine phosphorylation of Syk, Cbl, or the gamma subunit of FcR was similar in macrophages from wild-type and SHPS-1 mutant mice. These results suggest that ligation of SHPS-1 on macrophages by CD47 promotes the tyrosine phosphorylation of SHPS-1 and thereby prevents the FcgammaR-mediated disruption of the SHPS-1-SHP-1 complex, resulting in inhibition of phagocytosis. The inhibition of phagocytosis by the SHPS-1-SHP-1 complex may be mediated at the level of Syk or PI3K signaling.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view