SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Karcher N) "

Search: WFRF:(Karcher N)

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Pezzotta, A., et al. (author)
  • Euclid preparation XLI. Galaxy power spectrum modelling in real space
  • 2024
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 687
  • Journal article (peer-reviewed)abstract
    • We investigate the accuracy of the perturbative galaxy bias expansion in view of the forthcoming analysis of the Euclid spectroscopic galaxy samples. We compare the performance of a Eulerian galaxy bias expansion using state-of-the-art prescriptions from the effective field theory of large-scale structure (EFTofLSS) with a hybrid approach based on Lagrangian perturbation theory and high-resolution simulations. These models are benchmarked against comoving snapshots of the flagship I N-body simulation at z = (0.9, 1.2, 1.5, 1.8), which have been populated with H alpha galaxies leading to catalogues of millions of objects within a volume of about 58 h(-3) Gpc(3). Our analysis suggests that both models can be used to provide a robust inference of the parameters (h, omega c) in the redshift range under consideration, with comparable constraining power. We additionally determine the range of validity of the EFTofLSS model in terms of scale cuts and model degrees of freedom. From these tests, it emerges that the standard third-order Eulerian bias expansion - which includes local and non-local bias parameters, a matter counter term, and a correction to the shot-noise contribution - can accurately describe the full shape of the real-space galaxy power spectrum up to the maximum wavenumber of k(max) = 0.45 h Mpc(-1), and with a measurement precision of well below the percentage level. Fixing either of the tidal bias parameters to physically motivated relations still leads to unbiased cosmological constraints, and helps in reducing the severity of projection effects due to the large dimensionality of the model. We finally show how we repeated our analysis assuming a volume that matches the expected footprint of Euclid, but without considering observational effects, such as purity and completeness, showing that we can get constraints on the combination (h, omega c) that are consistent with the fiducial values to better than the 68% confidence interval over this range of scales and redshifts.
  •  
2.
  •  
3.
  • Jahn, A., et al. (author)
  • Arctic Ocean freshwater : How robust are model simulations?
  • 2012
  • In: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 117, s. C00D16-
  • Journal article (peer-reviewed)abstract
    • The Arctic freshwater (FW) has been the focus of many modeling studies, due to the potential impact of Arctic FW on the deep water formation in the North Atlantic. A comparison of the hindcasts from ten ocean-sea ice models shows that the simulation of the Arctic FW budget is quite different in the investigated models. While they agree on the general sink and source terms of the Arctic FW budget, the long-term means as well as the variability of the FW export vary among models. The best model-to-model agreement is found for the interannual and seasonal variability of the solid FW export and the solid FW storage, which also agree well with observations. For the interannual and seasonal variability of the liquid FW export, the agreement among models is better for the Canadian Arctic Archipelago (CAA) than for Fram Strait. The reason for this is that models are more consistent in simulating volume flux anomalies than salinity anomalies and volume-flux anomalies dominate the liquid FW export variability in the CAA but not in Fram Strait. The seasonal cycle of the liquid FW export generally shows a better agreement among models than the interannual variability, and compared to observations the models capture the seasonality of the liquid FW export rather well. In order to improve future simulations of the Arctic FW budget, the simulation of the salinity field needs to be improved, so that model results on the variability of the liquid FW export and storage become more robust. Citation: Jahn, A., et al. (2012), Arctic Ocean freshwater: How robust are model simulations?, J. Geophys. Res., 117, C00D16, doi: 10.1029/2012JC007907.
  •  
4.
  • Ulfsbo, Adam, 1985, et al. (author)
  • Rapid Changes in Anthropogenic Carbon Storage and Ocean Acidification in the Intermediate Layers of the Eurasian Arctic Ocean: 1996-2015
  • 2018
  • In: Global Biogeochemical Cycles. - : American Geophysical Union (AGU). - 0886-6236. ; 32:9, s. 1254-1275
  • Journal article (peer-reviewed)abstract
    • The extended multiple linear regression technique is used to determine changes in anthropogenic carbon in the intermediate layers of the Eurasian Basin based on occupations from four cruises between 1996 and 2015. The results show a significant increase in basin-wide anthropogenic carbon storage in the Nansen Basin (0.44-0.73 +/- 0.14 mol Cm-2.year(-1)) and the Amundsen Basin (0.63-1.04 +/- 0.09 mol C.m(-2).year(-1)). Over the last two decades, inferred changes in ocean acidification (0.020-0.055 pH units) and calcium carbonate desaturation (0.05-0.18 units) are pronounced and rapid. These results, together with results from carbonate-dynamic box model simulations and I-129 tracer distribution simulations, suggest that the accumulation of anthropogenic carbon in the intermediate layers of the Eurasian Basin are consistent with increasing concentrations of anthropogenic carbon in source waters of Atlantic origin entering the Arctic Ocean followed by interior transport. The dissimilar distributions of anthropogenic carbon in the interior Nansen and Amundsen Basins are likely due to differences in the lateral ventilation of the intermediate layers by the return flows and ramifications of the boundary current along the topographic boundaries in the Eurasian Basin.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view